Ferroelectric nanogenerators coupled to an electric circuit for energy harvesting

The direct transformation of ambient mechanical energy into electricity using ferroelectric nanogenerators is discussed within the context of usability for self-sustaining microelectronics. Thus, it is essential to store the generated electric energy within an accumulator or capacitor. However, the contact and charge status of the electric storage medium strongly influences the performance of the generator. This necessitates coupling of the generator and the electric circuit to determine working points. Therefore, a phase field model for the ferroelectric generator is coupled with the response of a standard full-wave rectifier and a capacitor. Nonlinear diode characteristics as well as energy losses are under consideration. The amount and the type of connections for the nanogenerators in the harvesting field are discussed to bridge from the nanoscale to electrical quantities for microelectronics.

[1]  Morton E. Gurtin,et al.  Continuum theory of thermally induced phase transitions based on an order parameter , 1993 .

[2]  Marc Kamlah,et al.  Size-dependent polarization distribution in ferroelectric nanostructures: Phase field simulations , 2008 .

[3]  Zhong Lin Wang,et al.  Lead-free NaNbO3 nanowires for a high output piezoelectric nanogenerator. , 2011, ACS nano.

[4]  Chad M. Landis,et al.  Computational modeling of domain wall interactions with dislocations in ferroelectric crystals , 2009 .

[5]  Chad M. Landis,et al.  Phase-Field Modeling of Domain Structure Energetics and Evolution in Ferroelectric Thin Films , 2010 .

[6]  Geon-Tae Hwang,et al.  Piezoelectric BaTiO₃ thin film nanogenerator on plastic substrates. , 2010, Nano letters.

[7]  M. Gurtin Generalized Ginzburg-Landau and Cahn-Hilliard equations based on a microforce balance , 1996 .

[8]  Zhong Lin Wang,et al.  Microfibre–nanowire hybrid structure for energy scavenging , 2008, Nature.

[9]  Einar Halvorsen,et al.  Piezoelectric MEMS energy harvesting systems driven by harmonic and random vibrations , 2010, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[10]  G. Fève,et al.  A coherent RC circuit , 2012, Reports on progress in physics. Physical Society.

[11]  Andrei Artemev,et al.  Phase-field modeling of domain structure of confined nanoferroelectrics. , 2008, Physical review letters.

[12]  Morton E. Gurtin,et al.  Dynamic solid-solid transitions with phase characterized by an order parameter , 1994 .

[13]  Shigeo Sasaki,et al.  Coupled Acoustic Modes in Tetragonal BaTiO3 , 1987 .

[14]  J. Hlinka,et al.  Phenomenological model of a 90° domain wall inBaTiO3-type ferroelectrics , 2006 .

[15]  Jürgen Schubert,et al.  Ferroelectric properties of epitaxial BaTiO3 thin films and heterostructures on different substrates , 2005 .

[16]  Zhong Lin Wang Ten years’ venturing in ZnO nanostructures: from discovery to scientific understanding and to technology applications , 2009 .

[17]  John E. Huber,et al.  A hexadomain vortex in tetragonal ferroelectrics , 2009 .

[18]  Xi Chen,et al.  1.6 V nanogenerator for mechanical energy harvesting using PZT nanofibers. , 2010, Nano letters.

[19]  Charles Kittel,et al.  Theory of the structure of ferromagnetic domains in films and small particles , 1946 .

[20]  Zhong Lin Wang,et al.  Self-powered nanowire devices. , 2010, Nature nanotechnology.

[21]  M. Alexe,et al.  Vortex ferroelectric domains , 2008 .

[22]  Liwei Lin,et al.  Direct-write piezoelectric polymeric nanogenerator with high energy conversion efficiency. , 2010, Nano letters.

[23]  John A Rogers,et al.  Stretchable ferroelectric nanoribbons with wavy configurations on elastomeric substrates. , 2011, ACS nano.

[24]  D. Jeong,et al.  Emerging memories: resistive switching mechanisms and current status , 2012, Reports on progress in physics. Physical Society.

[25]  Zhong Lin Wang,et al.  Power generation with laterally packaged piezoelectric fine wires. , 2009, Nature nanotechnology.

[26]  Zhiyuan Gao,et al.  GaN nanowire arrays for high-output nanogenerators. , 2010, Journal of the American Chemical Society.

[27]  Chad M. Landis,et al.  Domain engineered ferroelectric energy harvesters on a substrate , 2011 .

[28]  Michael C. McAlpine,et al.  Piezoelectric ribbons printed onto rubber for flexible energy conversion. , 2010, Nano letters.

[29]  K. Webber,et al.  Domains in ferroelectric nanodots. , 2009, Nano letters.

[30]  Mickaël Lallart,et al.  Ferroelectric Materials for Small-Scale Energy Harvesting Devices and Green Energy Products , 2011 .

[31]  Chad M. Landis,et al.  Continuum thermodynamics of ferroelectric domain evolution: Theory, finite element implementation, and application to domain wall pinning , 2007 .

[32]  Zhong Lin Wang,et al.  Piezoelectric nanogenerator using p-type ZnO nanowire arrays. , 2009, Nano letters.

[33]  Sang‐Woo Kim,et al.  Mechanically Powered Transparent Flexible Charge‐Generating Nanodevices with Piezoelectric ZnO Nanorods , 2009 .

[34]  Marc Kamlah,et al.  Domain control in ferroelectric nanodots through surface charges , 2008 .

[35]  A. F. Devonshire Theory of ferroelectrics , 1954 .

[36]  W. Wagner,et al.  Phase-field simulation and design of a ferroelectric nano-generator , 2011, Smart Structures and Materials + Nondestructive Evaluation and Health Monitoring.

[37]  Don Berlincourt,et al.  Elastic and Piezoelectric Coefficients of Single-Crystal Barium Titanate , 1958 .

[38]  Heinz Schmitt,et al.  Elastic and piezoelectric coefficients of TSSG barium titanate single crystals , 1986 .

[39]  M. Grimsditch,et al.  The elastic and electromechanical properties of tetragonal BaTiO3 single crystals , 1991 .