Stochastic Mode Reduction for the Immersed Boundary Method

We apply the formulation of a stochastic mode reduction method developed in a recent paper of Majda, Timofeyev, and Vanden-Eijnden [Comm. Pure Appl. Math., 54 (2001), pp. 891--974] (MTV) to obtain simplified equations for the dynamics of structures immersed in a thermally fluctuating fluid at low Reynolds (or Kubo) number, as simulated by a recent extension of the immersed boundary (IB) method by Kramer and Peskin [Proceedings of the Second MIT Conference on Computational Fluid and Solid Mechanics, Elsevier Science, Oxford, UK, 2003, pp. 1755--1758]. The effective dynamics of the immersed structures are not obvious in the primitive equations, which involve both fluid and structure dynamics, but the procedure of MTV allows the rigorous derivation of a reduced stochastic system for the immersed structures alone. We find, in the limit of small Reynolds (or Kubo) number, that the Lagrangian particle constituents of the immersed structures undergo a drift-diffusive motion with several physically correct featur...

[1]  Reuben Hersh,et al.  Random evolutions: A survey of results and problems , 1974 .

[2]  A. Majda,et al.  SIMPLIFIED MODELS FOR TURBULENT DIFFUSION : THEORY, NUMERICAL MODELLING, AND PHYSICAL PHENOMENA , 1999 .

[3]  S. Varadhan,et al.  Hydrodynamical limit for a Hamiltonian system with weak noise , 1993 .

[4]  John F. Brady,et al.  STOKESIAN DYNAMICS , 2006 .

[5]  J. Happel,et al.  Low Reynolds number hydrodynamics: with special applications to particulate media , 1973 .

[6]  A. Majdaa,et al.  A priori tests of a stochastic mode reduction strategy , 2002 .

[7]  H. Spohn Large Scale Dynamics of Interacting Particles , 1991 .

[8]  Marcel Lesieur,et al.  Turbulence in fluids , 1990 .

[9]  R. Carmona,et al.  Homogenization for time-dependent two-dimensional incompressible Gaussian flows , 1997 .

[10]  M. Vergassola,et al.  Particles and fields in fluid turbulence , 2001, cond-mat/0105199.

[11]  G. Papanicolaou Some probabilistic problems and methods in singular perturbations , 1976 .

[12]  D. Tritton,et al.  Physical Fluid Dynamics , 1977 .

[13]  Ryogo Kubo,et al.  STOCHASTIC LIOUVILLE EQUATIONS , 1963 .

[14]  D. Lieberman,et al.  Fourier analysis , 2004, Journal of cataract and refractive surgery.

[15]  C. Gardiner Handbook of Stochastic Methods , 1983 .

[16]  Tomasz Komorowski,et al.  Diffusive and Nondiffusive Limits of Transport in Nonmixing Flows , 2002, SIAM J. Appl. Math..

[17]  George Papanicolaou,et al.  Nonlinear diffusion limit for a system with nearest neighbor interactions , 1988 .

[18]  John F. Brady,et al.  Accelerated Stokesian Dynamics simulations , 2001, Journal of Fluid Mechanics.

[19]  H. L. Dryden,et al.  Investigations on the Theory of the Brownian Movement , 1957 .

[20]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[21]  G. Uhlenbeck,et al.  Contributions to Non‐Equilibrium Thermodynamics. I. Theory of Hydrodynamical Fluctuations , 1970 .

[22]  C S Peskin,et al.  A general method for the computer simulation of biological systems interacting with fluids. , 1995, Symposia of the Society for Experimental Biology.

[23]  G. Folland Introduction to Partial Differential Equations , 1976 .

[24]  A. Borodin,et al.  A limit theorem for solutions of di erential equations with random right-hand side , 1978 .

[25]  E. Hinch,et al.  The effect of particle interactions on dynamic light scattering from a dilute suspension , 1986, Journal of Fluid Mechanics.

[26]  R. Balescu,et al.  Collisional effects on diffusion scaling laws in electrostatic turbulence , 2000 .

[27]  B. Øksendal Stochastic Differential Equations , 1985 .

[28]  E. M. Lifshitz,et al.  Course in Theoretical Physics , 2013 .

[29]  C. Peskin The immersed boundary method , 2002, Acta Numerica.

[30]  G. Papanicolaou,et al.  Non-commuting random evolutions, and an operator-valued Feynman-Kac formula , 1972 .

[31]  Charles S. Peskin,et al.  Incorporating thermal fluctuations into the immersed boundary method , 2003 .

[32]  Thomas G. Kurtz,et al.  A limit theorem for perturbed operator semigroups with applications to random evolutions , 1973 .

[33]  Vanden Eijnden E,et al.  Models for stochastic climate prediction. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[34]  S. Prager,et al.  Variational Treatment of Hydrodynamic Interaction in Polymers , 1969 .

[35]  F. Reif,et al.  Fundamentals of Statistical and Thermal Physics , 1965 .

[36]  P. Pusey,et al.  Hydrodynamic interactions and diffusion in concentrated particle suspensions , 1983 .

[37]  Avellaneda,et al.  Stieltjes integral representation of effective diffusivities in time-dependent flows. , 1995, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.

[38]  Andrew J. Majda,et al.  A mathematical framework for stochastic climate models , 2001 .

[39]  Michel Loève,et al.  Probability Theory I , 1977 .

[40]  Andrew J. Majda,et al.  Stochastic Mode Reduction for Particle-Based Simulation Methods for Complex Microfluid Systems , 2004, SIAM J. Appl. Math..

[41]  R. Khas'minskii,et al.  Principle of Averaging for Parabolic and Elliptic Differential Equations and for Markov Processes with Small Diffusion , 1963 .

[42]  D. Ermak,et al.  Brownian dynamics with hydrodynamic interactions , 1978 .

[43]  S. Ethier,et al.  Markov Processes: Characterization and Convergence , 2005 .

[44]  A. Yaglom Correlation Theory of Stationary and Related Random Functions I: Basic Results , 1987 .