Noise reduction for weak lensing mass mapping: an application of generative adversarial networks to Subaru Hyper Suprime-Cam first-year data

We propose a deep-learning approach based on generative adversarial networks (GANs) to reduce noise in weak lensing mass maps under realistic conditions. We apply image-to-image translation using conditional GANs to the mass map obtained from the first-year data of Subaru Hyper Suprime-Cam (HSC) survey. We train the conditional GANs by using 25000 mock HSC catalogues that directly incorporate a variety of observational effects. We study the non-Gaussian information in denoised maps using one-point probability distribution functions (PDFs) and also perform matching analysis for positive peaks and massive clusters. An ensemble learning technique with our GANs is successfully applied to reproduce the PDFs of the lensing convergence. About $60\%$ of the peaks in the denoised maps with height greater than $5\sigma$ have counterparts of massive clusters within a separation of 6 arcmin. We show that PDFs in the denoised maps are not compromised by details of multiplicative biases and photometric redshift distributions, nor by shape measurement errors, and that the PDFs show stronger cosmological dependence compared to the noisy counterpart. We apply our denoising method to a part of the first-year HSC data to show that the observed mass distribution is statistically consistent with the prediction from the standard $\Lambda$CDM model.

[1]  N. Yoshida,et al.  Deep Learning for Line Intensity Mapping Observations: Information Extraction from Noisy Maps , 2020, 2010.00809.

[2]  Daniel J. Hsu,et al.  Interpreting deep learning models for weak lensing , 2020, Physical Review D.

[3]  Jean-Luc Starck,et al.  Deep learning dark matter map reconstructions from DES SV weak lensing data , 2019, Monthly Notices of the Royal Astronomical Society.

[4]  Takahiro Nishimichi,et al.  The mass–richness relation of optically selected clusters from weak gravitational lensing and abundance with Subaru HSC first-year data , 2019, Publications of the Astronomical Society of Japan.

[5]  R. Takahashi,et al.  Mock galaxy shape catalogues in the Subaru Hyper Suprime-Cam Survey , 2019, Monthly Notices of the Royal Astronomical Society.

[6]  Jia Liu,et al.  Constraining neutrino mass with weak lensing Minkowski Functionals , 2018, Journal of Cosmology and Astroparticle Physics.

[7]  Shiro Ikeda,et al.  Denoising Weak Lensing Mass Maps with Deep Learning , 2018, Physical Review D.

[8]  N. Yoshida,et al.  Dark Quest. I. Fast and Accurate Emulation of Halo Clustering Statistics and Its Application to Galaxy Clustering , 2018, The Astrophysical Journal.

[9]  David N. Spergel,et al.  Constraining neutrino mass with the tomographic weak lensing bispectrum , 2018, Journal of Cosmology and Astroparticle Physics.

[10]  M. Madhavacheril,et al.  Constraining neutrino mass with the tomographic weak lensing one-point probability distribution function and power spectrum , 2018, Physical Review D.

[11]  David N. Spergel,et al.  Cosmology from cosmic shear power spectra with Subaru Hyper Suprime-Cam first-year data , 2018, Publications of the Astronomical Society of Japan.

[12]  Istv'an Csabai,et al.  Learning from deep learning: better cosmological parameter inference from weak lensing maps , 2018, 1806.05995.

[13]  Daniel J. Hsu,et al.  Non-Gaussian information from weak lensing data via deep learning , 2018, ArXiv.

[14]  S. Borgani,et al.  The effect of baryons in the cosmological lensing PDFs , 2017, 1711.10017.

[15]  A. Leauthaud,et al.  Weak lensing shear calibration with simulations of the HSC survey , 2017, Monthly Notices of the Royal Astronomical Society.

[16]  D. Huterer,et al.  Dark energy two decades after: observables, probes, consistency tests , 2017, Reports on progress in physics. Physical Society.

[17]  R. Nichol,et al.  Dark Energy Survey Year 1 results: Cosmological constraints from cosmic shear , 2017, Physical Review D.

[18]  R. Nichol,et al.  Dark energy survey year 1 results: curved-sky weak lensing mass map , 2017, 1708.01535.

[19]  Satoshi Miyazaki,et al.  The first-year shear catalog of the Subaru Hyper Suprime-Cam Subaru Strategic Program Survey , 2017, 1705.06745.

[20]  Satoshi Miyazaki,et al.  The on-site quality-assurance system for Hyper Suprime-Cam: OSQAH , 2018 .

[21]  Yukiko Kamata,et al.  Hyper Suprime-Cam: System design and verification of image quality , 2018 .

[22]  Yukiko Kamata,et al.  Hyper Suprime-Cam: Camera dewar design , 2018 .

[23]  R. Takahashi,et al.  Full-sky Gravitational Lensing Simulation for Large-area Galaxy Surveys and Cosmic Microwave Background Experiments , 2017, 1706.01472.

[24]  Satoshi Miyazaki,et al.  The bright-star masks for the HSC-SSP survey , 2017, 1705.00622.

[25]  Satoshi Miyazaki,et al.  Photometric Redshifts for Hyper Suprime-Cam Subaru Strategic Program Data Release 1 , 2017, 1704.05988.

[26]  A. K. Inoue,et al.  The Hyper Suprime-Cam SSP Survey: Overview and Survey Design , 2017, 1704.05858.

[27]  Satoshi Miyazaki,et al.  An optically-selected cluster catalog at redshift 0.1 , 2017, 1701.00818.

[28]  P. Schneider,et al.  KiDS-450: cosmological parameter constraints from tomographic weak gravitational lensing , 2016, 1606.05338.

[29]  T. Eifler,et al.  The impact of intrinsic alignment on current and future cosmic shear surveys , 2015, 1506.08730.

[30]  William A. Brenneman,et al.  Optimal Sliced Latin Hypercube Designs , 2015, Technometrics.

[31]  R. Nichol,et al.  Wide-Field Lensing Mass Maps from Dark Energy Survey Science Verification Data. , 2015, Physical review letters.

[32]  L. Miller,et al.  PROPERTIES OF WEAK LENSING CLUSTERS DETECTED ON HYPER SUPRIME-CAM's 2.3 deg2 FIELD , 2015 .

[33]  Naoki Yoshida,et al.  Probing cosmology with weak lensing selected clusters – I. Halo approach and all-sky simulations , 2015, 1504.05672.

[34]  Morgan May,et al.  Emulating the CFHTLenS weak lensing data: Cosmological constraints from moments and Minkowski functionals , 2015, 1503.06214.

[35]  C. A. Oxborrow,et al.  Planck2015 results , 2015, Astronomy & Astrophysics.

[36]  Naoki Yoshida,et al.  IMPACT OF BARYONIC PROCESSES ON WEAK-LENSING COSMOLOGY: POWER SPECTRUM, NONLOCAL STATISTICS, AND PARAMETER BIAS , 2015, 1501.02055.

[37]  Mustapha Ishak,et al.  The Intrinsic Alignment of Galaxies and its Impact on Weak Gravitational Lensing in an Era of Precision Cosmology , 2014, 1407.6990.

[38]  M. Oguri A cluster finding algorithm based on the multiband identification of red sequence galaxies , 2014, 1407.4693.

[39]  Chieh-An Lin,et al.  A New Model to Predict Weak Lensing Peak Counts , 2014, Proceedings of the International Astronomical Union.

[40]  Naoki Yoshida,et al.  STATISTICAL AND SYSTEMATIC ERRORS IN THE MEASUREMENT OF WEAK-LENSING MINKOWSKI FUNCTIONALS: APPLICATION TO THE CANADA–FRANCE–HAWAII LENSING SURVEY , 2013, 1312.5032.

[41]  Naoki Yoshida,et al.  EFFECT OF MASKED REGIONS ON WEAK-LENSING STATISTICS , 2013, 1304.2164.

[42]  Edward J. Wollack,et al.  NINE-YEAR WILKINSON MICROWAVE ANISOTROPY PROBE (WMAP) OBSERVATIONS: COSMOLOGICAL PARAMETER RESULTS , 2012, 1212.5226.

[43]  Risa H. Wechsler,et al.  THE ROCKSTAR PHASE-SPACE TEMPORAL HALO FINDER AND THE VELOCITY OFFSETS OF CLUSTER CORES , 2011, 1110.4372.

[44]  Matthew R. Becker,et al.  calclens: weak lensing simulations for large-area sky surveys and second-order effects in cosmic shear power spectra , 2012, 1210.3069.

[45]  T. Nishimichi,et al.  Combining perturbation theories with halo models , 2010, 1009.0597.

[46]  H. Shan,et al.  NOISY WEAK-LENSING CONVERGENCE PEAK STATISTICS NEAR CLUSTERS OF GALAXIES AND BEYOND , 2010, 1006.5121.

[47]  Morgan May,et al.  Probing cosmology with weak lensing peak counts , 2009, 0907.0486.

[48]  J. P. Dietrich,et al.  Cosmology with the shear-peak statistics , 2009, 0906.3512.

[49]  Masanori Sato,et al.  SIMULATIONS OF WIDE-FIELD WEAK LENSING SURVEYS. I. BASIC STATISTICS AND NON-GAUSSIAN EFFECTS , 2009, 0906.2237.

[50]  Y. Jing,et al.  Modeling Nonlinear Evolution of Baryon Acoustic Oscillations: Convergence Regime of $N$-body Simulations and Analytic Models , 2008, 0810.0813.

[51]  Morgan May,et al.  CONSTRAINING COSMOLOGY WITH HIGH-CONVERGENCE REGIONS IN WEAK LENSING SURVEYS , 2008, 0809.4052.

[52]  R. Nichol,et al.  Intrinsic galaxy alignments from the 2SLAQ and SDSS surveys: luminosity and redshift scalings and implications for weak lensing surveys , 2007, astro-ph/0701671.

[53]  M. Crocce,et al.  Transients from initial conditions in cosmological simulations , 2006, astro-ph/0606505.

[54]  V. Springel The Cosmological simulation code GADGET-2 , 2005, astro-ph/0505010.

[55]  Naoki Yoshida,et al.  Searching for massive clusters in weak lensing surveys , 2003, astro-ph/0310607.

[56]  U. Florida,et al.  Weak-Lensing Mass Reconstruction of the Interacting Cluster 1E 0657–558: Direct Evidence for the Existence of Dark Matter , 2003, astro-ph/0312273.

[57]  G. Bernstein,et al.  The skewness of the aperture mass statistic , 2003, astro-ph/0307393.

[58]  Yannick Mellier,et al.  Detection of Dark Matter Skewness in the VIRMOS-DESCART Survey: Implications for Ω0 , 2003 .

[59]  Uros Seljak,et al.  Shear calibration biases in weak-lensing surveys , 2003, astro-ph/0301054.

[60]  Matias Zaldarriaga,et al.  Higher Order Moments of the Cosmic Shear and Other Spin-2 Fields , 2003 .

[61]  Masahiro Takada,et al.  The Three-Point Correlation Function for Spin-2 Fields , 2002, astro-ph/0210261.

[62]  Bonn,et al.  Analysis of two-point statistics of cosmic shear - I. Estimators and covariances , 2002, astro-ph/0206182.

[63]  M. Takada,et al.  Lognormal Property of Weak-Lensing Fields , 2002, astro-ph/0202090.

[64]  G. M. Bernstein,et al.  Shapes and Shears, Stars and Smears: Optimal Measurements for Weak Lensing , 2001 .

[65]  Y. Jing,et al.  Implication of Ωm through the Morphological Analysis of Weak Lensing Fields , 2001, astro-ph/0104015.

[66]  Yannick Mellier,et al.  Numerical study of the statistical properties of the lensing excursion angles , 2001 .

[67]  B. Jain,et al.  The Topology of Weak Lensing Fields , 2000, astro-ph/0009402.

[68]  Martin White,et al.  Power Spectra Estimation for Weak Lensing , 2000 .

[69]  Uros Seljak,et al.  Ray-tracing Simulations of Weak Lensing by Large-Scale Structure , 1999, astro-ph/9901191.

[70]  A. Lewis,et al.  Efficient computation of CMB anisotropies in closed FRW models , 1999, astro-ph/9911177.

[71]  P. Schneider Detection of (dark) matter concentrations via weak gravitational lensing , 1996, astro-ph/9601039.

[72]  Claude Brezinski,et al.  Numerical recipes in Fortran (The art of scientific computing) : W.H. Press, S.A. Teukolsky, W.T. Vetterling and B.P. Flannery, Cambridge Univ. Press, Cambridge, 2nd ed., 1992. 963 pp., US$49.95, ISBN 0-521-43064-X.☆ , 1993 .

[73]  N. Kaiser,et al.  Mapping the dark matter with weak gravitational lensing , 1993 .

[74]  F. Valdes,et al.  Detection of systematic gravitational lens galaxy image alignments - Mapping dark matter in galaxy clusters , 1990 .