Combining similarity measures in content-based image retrieval
暂无分享,去创建一个
Juan Domingo | Francesc J. Ferri | Miguel Arevalillo-Herráez | J. Domingo | F. Ferri | M. Arevalillo-Herráez
[1] Joachim M. Buhmann,et al. Empirical Evaluation of Dissimilarity Measures for Color and Texture , 2001, Comput. Vis. Image Underst..
[2] Ian Burns,et al. Measuring texture classification algorithms , 1997, Pattern Recognit. Lett..
[3] Ebroul Izquierdo,et al. Optimizing Metrics Combining Low-Level Visual Descriptors for Image Annotation and Retrieval , 2006, 2006 IEEE International Conference on Acoustics Speech and Signal Processing Proceedings.
[4] Pablo Castells,et al. Probabilistic Score Normalization for Rank Aggregation , 2006, ECIR.
[5] Stéphane Marchand-Maillet,et al. Combining multimodal preferences for multimedia information retrieval , 2007, MIR '07.
[6] David G. Stork,et al. Pattern Classification , 1973 .
[7] Michael J. Swain,et al. Color indexing , 1991, International Journal of Computer Vision.
[8] Wan-Chi Siu,et al. Multimedia Information Retrieval and Management: Technological Fundamentals and Applications , 2010 .
[9] Mohan M. Trivedi,et al. Segmentation of a high-resolution urban scene using texture operators , 1984, Comput. Vis. Graph. Image Process..
[10] Ramin Zabih,et al. Histogram refinement for content-based image retrieval , 1996, Proceedings Third IEEE Workshop on Applications of Computer Vision. WACV'96.
[11] Dirk Neumann,et al. Image retrieval and perceptual similarity , 2006, TAP.
[12] Edward A. Fox,et al. A new framework to combine descriptors for content-based image retrieval , 2005, CIKM '05.
[13] Robert M. Haralick,et al. Textural Features for Image Classification , 1973, IEEE Trans. Syst. Man Cybern..
[14] Joni-Kristian Kämäräinen,et al. Improving similarity measures of histograms using smoothing projections , 2003, Pattern Recognit. Lett..
[15] Jiri Matas,et al. On Combining Classifiers , 1998, IEEE Trans. Pattern Anal. Mach. Intell..
[16] Guillermo Ayala,et al. Spatial Size Distributions: Applications to Shape and Texture Analysis , 2001, IEEE Trans. Pattern Anal. Mach. Intell..
[17] Tat-Seng Chua,et al. Integrated graph-based semi-supervised multiple/single instance learning framework for image annotation , 2008, ACM Multimedia.
[18] Giorgio Giacinto,et al. Nearest-prototype relevance feedback for content based image retrieval , 2004, ICPR 2004.
[19] Guillermo Ayala,et al. A novel Bayesian framework for relevance feedback in image content-based retrieval systems , 2006, Pattern Recognit..
[20] Minh N. Do,et al. Wavelet-based texture retrieval using generalized Gaussian density and Kullback-Leibler distance , 2002, IEEE Trans. Image Process..
[21] B. Silverman. Density estimation for statistics and data analysis , 1986 .
[22] Jake K. Aggarwal,et al. Combining structure, color and texture for image retrieval: A performance evaluation , 2002, Object recognition supported by user interaction for service robots.
[23] Pierre Soille,et al. Morphological Image Analysis: Principles and Applications , 2003 .
[24] James Ze Wang,et al. Image retrieval: Ideas, influences, and trends of the new age , 2008, CSUR.
[25] Esther de Ves,et al. Applying logistic regression to relevance feedback in image retrieval systems , 2007, Pattern Recognit..
[26] Yong Wang,et al. Combining global, regional and contextual features for automatic image annotation , 2009, Pattern Recognit..
[27] Alireza Khotanzad,et al. Invariant Image Recognition by Zernike Moments , 1990, IEEE Trans. Pattern Anal. Mach. Intell..
[28] E. Dougherty,et al. Gray-scale morphological granulometric texture classification , 1994 .
[29] Joemon M. Jose,et al. Evidence combination for multi-point query learning in content-based image retrieval , 2004, IEEE Sixth International Symposium on Multimedia Software Engineering.
[30] Esther de Ves,et al. Selecting the structuring element for morphological texture classification , 2006, Pattern Analysis and Applications.
[31] Norbert Fuhr,et al. From Retrieval Status Values to Probabilities of Relevance for Advanced IR Applications , 2004, Information Retrieval.
[32] C.-C. Jay Kuo,et al. Wavelet descriptor of planar curves: theory and applications , 1996, IEEE Trans. Image Process..
[33] Claudio Gutierrez,et al. Survey of graph database models , 2008, CSUR.
[34] Edward Y. Chang,et al. Discovery of a perceptual distance function for measuring image similarity , 2003, Multimedia Systems.
[35] M. C. Jones,et al. A reliable data-based bandwidth selection method for kernel density estimation , 1991 .
[36] R. Manmatha,et al. Modeling score distributions for combining the outputs of search engines , 2001, SIGIR '01.
[37] Nicu Sebe,et al. Content-based multimedia information retrieval: State of the art and challenges , 2006, TOMCCAP.
[38] Juan Domingo,et al. Probabilistic normalization: an approach to normalizing similarity measures in content based image retrieval , 2008 .
[39] Rama Chellappa,et al. Classification of textures using Gaussian Markov random fields , 1985, IEEE Trans. Acoust. Speech Signal Process..
[40] Arun Ross,et al. Score normalization in multimodal biometric systems , 2005, Pattern Recognit..
[41] Anil K. Jain,et al. Decision-level fusion in fingerprint verification , 2001, Pattern Recognit..
[42] M. Vetterli,et al. Wavelet-Based Texture Retrieval Using Generalized , 2002 .
[43] David W. Corne,et al. Approximating the Nondominated Front Using the Pareto Archived Evolution Strategy , 2000, Evolutionary Computation.
[44] Thierry Pun,et al. Performance evaluation in content-based image retrieval: overview and proposals , 2001, Pattern Recognit. Lett..