Wavelength selection criteria for laser communications

Laser communication systems can be based on a wide range of wavelengths in the optical and infrared regimes. This article provides a rationale for the selection of wavelengths particularly suited for free space laser communication systems. The choice of wavelengths is based on an analysis of propagation issues, especially through the atmosphere, optical background noise, and the necessary technologies that include lasers, detectors, and spectral filters. The maturity of technology is assessed and given due consideration to identify suitable wavelengths for today's laser communication systems. Figures of merit are also developed where useful to provide a comparative estimate of expected system performance as a function of wavelength.

[1]  T. Flattau,et al.  CO2laser communication systems for near-earth space applications , 1977, Proceedings of the IEEE.

[2]  Uriel Frisch,et al.  WAVE PROPAGATION IN RANDOM MEDIA. , 1970 .

[3]  Samuel I. Green High-Speed Communication Detector Characterization By Bit Error Rate Measurements , 1978, Optics & Photonics.

[4]  S. H. Melfi Remote sensing for air quality management , 1976 .

[5]  J. Katz Detectors for optical communications: A review , 1983 .

[6]  Robert G. Marshalek,et al.  Comparison Of Optical Technologies For Intersatellite Links In A Global Telecommunications Network , 1988 .

[7]  D. Fried Anisoplanatism in adaptive optics , 1982 .

[8]  Hans Melchior Detectors for lightwave communication , 1977 .

[9]  Gerald E Homstad,et al.  Aperture-averaging effects for weak scintillations* , 1974 .

[10]  H. Hodara,et al.  Laser wave propagation through the atmosphere , 1966 .

[11]  K. Shaik Spectral filters for laser communications , 1991 .

[12]  Monte Ross The History Of Space Laser Communications , 1988, Photonics West - Lasers and Applications in Science and Engineering.

[13]  J. Hecht,et al.  The Laser Guidebook , 1986 .

[14]  V. Zuev Laser Beams in the Atmosphere , 1982 .

[15]  J. Nussli,et al.  Recent Trends in Photomultipliers for Nuclear Physics , 1983 .

[16]  Jerry A. Gelbwachs,et al.  Atomic resonance filters , 1988 .

[17]  Michael D. Wilhelm,et al.  Optical networks for earth-space communications and their performance , 1994, Photonics West - Lasers and Applications in Science and Engineering.

[18]  H. Yura,et al.  Optical scintillation statistics for IR ground-to-space laser communication systems. , 1983, Applied optics.

[19]  J. Strohbehn Laser beam propagation in the atmosphere , 1978 .

[20]  J. Wolf,et al.  Space laser communications systems for the eighties , 1980 .

[21]  K. Shaik,et al.  Atmospheric Propagation Effects Relevant to Optical Communications , 1988 .

[22]  M. Ross,et al.  Space optical communications with the Nd: YAG laser , 1978, Proceedings of the IEEE.

[23]  G. S. Mecherle,et al.  Beam pointing error as a significant design parameter for satellite-borne, free-space optical communication systems , 1985 .

[24]  J. R. Kerr,et al.  Atmospheric optical communications systems , 1970 .

[25]  J. V. Ramsay,et al.  Very Narrow Band Interference Filters , 1967, Publications of the Astronomical Society of Australia.

[26]  A. Jelalian Laser radar systems , 1980 .

[27]  Akira Ishimaru,et al.  Wave propagation and scattering in random media , 1997 .

[28]  David L. Fried,et al.  Aperture Averaging of Scintillation , 1967 .

[29]  R. J. McIntyre,et al.  Recent developments in silicon avalanche photodiodes , 1985 .

[30]  G C Mooradian,et al.  Blue-green pulsed propagation through fog. , 1979, Applied optics.

[31]  H. Yura,et al.  Aperture averaging of scintillation for space-to-ground optical communication applications. , 1983, Applied optics.

[32]  R. Fante,et al.  Electromagnetic beam propagation in turbulent media: An update , 1980, Proceedings of the IEEE.

[33]  Kamran Shaik Atmospheric transmission calculations for optical frequencies , 1989 .

[34]  L. R. Bissonnette,et al.  Propagation model of laser beams in turbulence , 1983 .

[35]  Akira Ishimaru,et al.  Theory Of Optical Propagation In The Atmosphere , 1981 .

[36]  T. M. Shay,et al.  Theoretical model for a Faraday anomalous dispersion optical filter , 1991 .