Halogen Bonding in Isostructural Co(II) Complexes with 2-Halopyridines

Three complexes [Co(2-XPy)2Cl2] (X = Cl, Br, and I) were prepared and characterized, representing a rare case of isostructurality within the Cl-Br-I row. The nature of halogen bonding (XB) in a solid state was studied by DFT calculations, revealing a tendency of XB energy growth for heavier halogens.

[1]  G. Starova,et al.  Isomorphous Series of PdII-Containing Halogen-Bond Donors Exhibiting Cl/Br/I Triple Halogen Isostructural Exchange , 2020 .

[2]  E. Benassi,et al.  [{AgL}2Mo8O26]n- complexes: a combined experimental and theoretical study. , 2020, Dalton transactions.

[3]  P. Metrangolo,et al.  Halogen bond-assisted self-assembly of gold nanoparticles in solution and on a planar surface. , 2019, Nanoscale.

[4]  L. Catalano,et al.  Halogen Bonding Beyond Crystals in Materials Science. , 2019, The journal of physical chemistry. B.

[5]  Dan Zhao,et al.  Versatile supramolecular binding modes of 1,4-diiodotetrafluorobenzene for molecular cocrystal engineering , 2019, Journal of Molecular Structure.

[6]  A. Novikov,et al.  Metal-Involving Bifurcated Halogen Bonding C–Br···η2(Cl–Pt) , 2018, Crystal Growth & Design.

[7]  D. Samsonenko,et al.  Halobismuthates with halopyridinium cations: appearance or non-appearance of unusual colouring , 2018 .

[8]  V. Boyarskiy,et al.  Pt/Pd and I/Br Isostructural Exchange Provides Formation of C–I···Pd, C–Br···Pt, and C–Br···Pd Metal-Involving Halogen Bonding , 2018, Crystal Growth & Design.

[9]  C. Landee,et al.  Copper(II) halide complexes of aminopyridines: Syntheses, structures and magnetic properties of [(5CAP)2CuX2] and [(5BAP)nCuX2] (X = Cl, Br) , 2018, Journal of Coordination Chemistry.

[10]  A. Novikov,et al.  Tetrachloromethane as halogen bond donor toward metal-bound halides , 2018, Zeitschrift für Kristallographie - Crystalline Materials.

[11]  A. Novikov,et al.  Dramatically Enhanced Solubility of Halide-Containing Organometallic Species in Diiodomethane: The Role of Solvent⋅⋅⋅Complex Halogen Bonding. , 2018, Angewandte Chemie.

[12]  K. Rissanen,et al.  Halogen Bonds in Square Planar 2,5‐Dihalopyridine–Copper(II) Bromide Complexes , 2018 .

[13]  N. Kuznetsov,et al.  Mechanism of generation of closo-decaborato amidrazones. Intramolecular non-covalent B–H⋯π(Ph) interaction determines stabilization of the configuration around the amidrazone CN bond , 2018 .

[14]  K. Rissanen,et al.  Halogen bonds in 2,5-dihalopyridine-copper(II) chloride complexes , 2018 .

[15]  J. Yao,et al.  Room-Temperature Phosphorescence in Pure Organic Materials: Halogen Bonding Switching Effects. , 2018, Chemistry.

[16]  P. Ghosh,et al.  Selective Sensing of Phosphates by a New Bis-heteroleptic RuII Complex through Halogen Bonding: A Superior Sensor over Its Hydrogen-Bonding Analogue. , 2016, Chemistry.

[17]  Pierangelo Metrangolo,et al.  The Halogen Bond , 2016, Chemical reviews.

[18]  P. Chou,et al.  Halogen Bonding to Amplify Luminescence: A Case Study Using a Platinum Cyclometalated Complex. , 2015, Angewandte Chemie.

[19]  B. Twamley,et al.  Dual Behavior of Bromine Atoms in Supramolecular Chemistry: The Crystal Structure and Magnetic Properties of Two Copper(II) Coordination Polymers , 2015 .

[20]  B. K. Saha,et al.  A thermal expansion investigation of the melting point anomaly in trihalomesitylenes. , 2015, Chemical communications.

[21]  G. Sheldrick Crystal structure refinement with SHELXL , 2015, Acta crystallographica. Section C, Structural chemistry.

[22]  V. Tsirelson,et al.  Interplay between non-covalent interactions in complexes and crystals with halogen bonds , 2014 .

[23]  D. Taher,et al.  Competition between Hydrogen and Halogen Bonding Interactions: Theoretical and Crystallographic Studies , 2014 .

[24]  B. K. Saha,et al.  The effect of temperature on interhalogen interactions in a series of isostructural organic systems , 2014 .

[25]  Pierangelo Metrangolo,et al.  Definition of the halogen bond (IUPAC Recommendations 2013) , 2013 .

[26]  Pierangelo Metrangolo,et al.  The Halogen Bond in the Design of Functional Supramolecular Materials: Recent Advances , 2013, Accounts of chemical research.

[27]  T. Rüffer,et al.  The role of Fe–X···X–Fe contacts in the crystal structures of [(2-iodopyridinium)2FeX4]X (X = Cl, Br) , 2013, Structural Chemistry.

[28]  Mikhail V. Vener,et al.  Intermolecular hydrogen bond energies in crystals evaluated using electron density properties: DFT computations with periodic boundary conditions , 2012, J. Comput. Chem..

[29]  S. Telfer,et al.  Copper(II) halide coordination complexes and salts of 3-halo-2-methylpyridines: Synthesis, structure and magnetism , 2012 .

[30]  Ulli Englert,et al.  The halogen bond made visible: experimental charge density of a very short intermolecular Cl···Cl donor-acceptor contact. , 2012, Chemical communications.

[31]  Katarzyna Wiktorska,et al.  Crystal structure, electronic properties and cytotoxic activity of palladium chloride complexes with monosubstituted pyridines. , 2012, Dalton transactions.

[32]  B. Twamley,et al.  Tuning Molecular Structures Using Weak Noncovalent Interactions: Theoretical Study and Structure of trans-Bis(2-chloropyridine)dihalocopper(II) and trans-Bis(3-chloropyridine)dibromocopper(II) , 2011 .

[33]  B. Twamley,et al.  The Analogy of C−Br···Br−C, C−Br···Br−Fe, and Fe−Br···Br−Fe Contacts: Crystal Structures of (26DAPH)FeBr4 and (26DA35DBPH)2FeBr4·Br , 2010 .

[34]  Rosendo Valero,et al.  Consistent van der Waals radii for the whole main group. , 2009, The journal of physical chemistry. A.

[35]  Salim F. Haddad,et al.  The electrostatic nature of aryl-bromine-halide synthons : The role of aryl-bromine-halide synthons in the crystal structures of the trans-bis(2-bromopyridine)dihalocopper(II) and trans-bis(3-bromopyridine)dihalocopper(II) complexes , 2006 .

[36]  C. Hu,et al.  Structural trends in one and two dimensional coordination polymers of cadmium(II) with halide bridges and pyridine-type ligands , 2003 .

[37]  E. Molins,et al.  From weak to strong interactions: A comprehensive analysis of the topological and energetic properties of the electron density distribution involving X–H⋯F–Y systems , 2002 .

[38]  Claude Lecomte,et al.  Hydrogen bond strengths revealed by topological analyses of experimentally observed electron densities , 1998 .

[39]  J. Kildea,et al.  Lewis-base adducts of group 11 metal(I) compounds. 60. Binuclear adducts of copper(I) halides with 2-hindered pyridine bases , 1991 .

[40]  R. Bader,et al.  A quantum theory of molecular structure and its applications , 1991 .

[41]  C. T. Mortimer,et al.  The thermal decomposition of transition-metal complexes containing heterocyclic ligands: 3. Substituted pyridine complexes of cobalt , 1974 .

[42]  A. Bondi van der Waals Volumes and Radii of Metals in Covalent Compounds , 1966 .

[43]  W. McWhinnie The far infra-red spectra of metal complexes containing substituted pyridines as ligands—II Complexes of cobalt (II) and copper (II) with 2-chloro- and 2-bromo-pyridine , 1965 .

[44]  T. Wadsten,et al.  PYRIDINE-TYPE COMPLEXES OF TRANSITION-METAL HALIDES VII. THERMAL AND STRUCTURAL PROPERTIES OF COBALT(II) HALIDE COMPLEXES FORMED WITH 2-HALOGENOPYRIDI NES , 1999 .

[45]  G. Keserü,et al.  Pyridine-type complexes of transition-metal halides V. Preparation, thermal properties, infrared spectra and crystal structure of dibromo-bis(2-bromopyridine)cobalt(II) , 1994 .

[46]  A. Underhill,et al.  Complexes of cobalt(II) and nickel(II) halides with some halogenopyridines , 1968 .