暂无分享,去创建一个
[1] O. Knill. An index formula for simple graphs , 2012, ArXiv.
[2] J. Whitehead. Simplicial Spaces, Nuclei and m‐Groups , 1939 .
[3] Iraj Saniee,et al. Large-scale curvature of networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.
[4] An integrable evolution equation in geometry , 2013, 1306.0060.
[5] Oliver Knill,et al. On the Dimension and Euler characteristic of random graphs , 2011, ArXiv.
[6] M. Spivak. A comprehensive introduction to differential geometry , 1979 .
[7] Oliver Knill,et al. A notion of graph homeomorphism , 2014, ArXiv.
[8] V. Klee. A Combinatorial Analogue of Poincaré's Duality Theorem , 1964, Canadian Journal of Mathematics.
[9] Tom Tucker. A RIEMANN-HURWITZ THEOREM IN GRAPH THEORY , 2018 .
[10] R. Forman. Combinatorial Differential Topology and Geometry , 1999 .
[11] L. A. Santaló. Introduction to integral geometry , 1953 .
[12] X. Gu,et al. Discrete Curvature Flow for Hyperbolic 3-Manifolds with Complete Geodesic Boundaries , 2008 .
[13] Oliver Knill,et al. The graph spectrum of barycentric refinements , 2015, ArXiv.
[14] F. Frances Yao,et al. Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.
[15] Daniel J. Kelleher,et al. Random Walks on Barycentric Subdivisions and the Strichartz Hexacarpet , 2011, Exp. Math..
[16] E. Grinspun. Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.
[17] S. Chern. A simple instrinsic proof of the Gauss Bonnet formula for closed Riemannian manifolds , 1944 .
[18] M Morse,et al. Singular Points of Vector Fields under General Boundary Conditions. , 1928, Proceedings of the National Academy of Sciences of the United States of America.
[19] Oliver Knill,et al. The Dirac operator of a graph , 2013, ArXiv.
[20] Oliver Knill,et al. The Jordan-Brouwer theorem for graphs , 2015, ArXiv.
[21] Gabor T. Herman,et al. Geometry of digital spaces , 1998, Optics & Photonics.
[22] Yiying Tong,et al. Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.
[23] Daniel A. Klain,et al. Introduction to Geometric Probability , 1997 .
[24] J. Jost. Riemannian geometry and geometric analysis , 1995 .
[25] Oliver Knill,et al. The McKean-Singer Formula in Graph Theory , 2013, ArXiv.
[26] Daniel A. White,et al. A Discrete Differential Forms Framework for Computational Electromagnetism , 2004 .
[27] Serguei Norine,et al. Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.
[28] Robin Forman,et al. Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..
[29] Oliver Knill,et al. A Sard theorem for graph theory , 2015, ArXiv.
[30] Leo Grady,et al. Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .
[31] B. Grünbaum. Polytopes, graphs, and complexes , 1970 .
[32] S. Rosenberg. The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .
[33] Jeremy Gray,et al. A history of algebraic and differential topology, 1900–1960: By Jean Dieudonné. Boston and Basel (Birkhäuser). 1989. xxi + 648 pp , 1991 .
[34] Steve Fisk. The nonexistence of colorings , 1978, J. Comb. Theory, Ser. B.
[35] B. Dundas,et al. DIFFERENTIAL TOPOLOGY , 2002 .
[36] Alexander V. Ivashchenko. Graphs of spheres and tori , 1994, Discret. Math..
[37] Isabella Novik,et al. Face numbers of manifolds with boundary , 2015, 1509.05115.
[38] Charalambos A. Charalambides,et al. Enumerative combinatorics , 2018, SIGA.
[39] Oliver Knill,et al. On index expectation and curvature for networks , 2012, ArXiv.
[40] T. Banchoff. Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .
[41] Willem H. Haemers,et al. Spectra of Graphs , 2011 .
[42] Alexander V. Ivashchenko,et al. Contractible transformations do not change the homology groups of graphs , 1994, Discret. Math..
[44] Duncan J. Watts,et al. The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .
[45] I. Holopainen. Riemannian Geometry , 1927, Nature.
[46] Victor Neumann-Lara,et al. Digital Jordan curves — a graph-theoretical approach to a topological theorem , 1992 .
[47] Oliver Knill,et al. A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.
[48] Oliver Knill,et al. Classical mathematical structures within topological graph theory , 2014, ArXiv.
[49] O. Post. Spectral Analysis on Graph-like Spaces , 2012 .
[50] Gábor Hetyei. The Stirling Polynomial of a Simplicial Complex , 2006, Discret. Comput. Geom..
[51] S. Chern. Historical Remarks on Gauss-Bonnet , 1990 .
[52] J. Jost,et al. Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.
[53] G. C. Shephard,et al. Convex Polytopes , 1969, The Mathematical Gazette.
[54] M. A. Mor'on,et al. Pascal triangle, Stirling numbers and the unique invariance of the Euler characteristic , 2012, 1202.0663.
[55] I. Lakatos. PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.
[56] Ed Swartz,et al. Applications of Klee’s Dehn–Sommerville Relations , 2008, Discret. Comput. Geom..
[57] Li Yu. A property that characterizes Euler characteristic among invariants of combinatorial manifolds , 2009, 0903.2523.
[58] David Richeson. Euler's Gem: The Polyhedron Formula and the Birth of Topology , 2008 .
[59] J. W. Alexander. A proof of the invariance of certain constants of analysis situs , 1915 .
[60] Norman Levitt,et al. The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes , 1992, Discret. Comput. Geom..
[61] Z. Duan,et al. GRAPH THEORY AND COMPLEX NETWORKS , 2008 .
[62] Yusuke Higuchi. Combinatorial curvature for planar graphs , 2001, J. Graph Theory.
[63] Alexander V. Evako. Dimension on discrete spaces , 1994 .
[64] G. Ziegler. Lectures on Polytopes , 1994 .
[65] J. Conway,et al. The Symmetries of Things , 2008 .
[66] R. Ho. Algebraic Topology , 2022 .
[67] Oliver Knill,et al. Cauchy-Binet for Pseudo-Determinants , 2013, 1306.0062.
[68] A. Pressley. Elementary Differential Geometry , 2000 .
[69] Victor Klee,et al. The Euler Characteristic in Combinatorial Geometry , 1963 .
[70] Reuven Cohen,et al. Complex Networks: Structure, Robustness and Function , 2010 .
[71] Oliver Knill,et al. Graphs with Eulerian unit spheres , 2015, ArXiv.
[72] Oliver C. Ibe,et al. Fundamentals of Stochastic Networks , 2011 .
[73] Oliver Knill,et al. The theorems of Green-Stokes,Gauss-Bonnet and Poincare-Hopf in Graph Theory , 2012, ArXiv.
[74] E. Todeva. Networks , 2007 .
[75] Oliver Knill,et al. A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.
[76] Justin Roberts. UNUSUAL FORMULAE FOR THE EULER CHARACTERISTIC , 2002 .
[77] I. Chavel. Eigenvalues in Riemannian geometry , 1984 .
[78] Oliver Knill,et al. A discrete Gauss-Bonnet type theorem , 2010, 1009.2292.
[79] Oliver Knill. A Brouwer fixed-point theorem for graph endomorphisms , 2012, ArXiv.
[80] Matthew L. Wright,et al. A Hadwiger Theorem for Simplicial Maps , 2014, 1402.6391.
[81] Oliver Knill,et al. The zeta function for circular graphs , 2013, ArXiv.
[82] T. Regge. General relativity without coordinates , 1961 .
[83] Gil Kalai. A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.
[84] A. Sard,et al. The measure of the critical values of differentiable maps , 1942 .
[85] S. Fisk. Geometric coloring theory , 1977 .
[86] R. Stanley. Combinatorics and commutative algebra , 1983 .
[87] C. B. Allendoerfer,et al. The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .
[88] Christopher Francese,et al. The Flaw in Euler's Proof of His Polyhedral Formula , 2007, Am. Math. Mon..
[89] T. Banchoff. CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .
[90] Gordon F. Royle,et al. Algebraic Graph Theory , 2001, Graduate texts in mathematics.
[91] Hans L. Cycon,et al. Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .
[92] Isospectral deformations of the Dirac operator , 2013, 1306.5597.
[93] C. Rovelli. Zakopane lectures on loop gravity , 2011, 1102.3660.
[94] Mark E. J. Newman,et al. Structure and Dynamics of Networks , 2009 .
[95] Oliver Knill,et al. Universality for Barycentric subdivision , 2015, ArXiv.
[96] Piet Van Mieghem,et al. Graph Spectra for Complex Networks , 2010 .
[97] Preface. A Panoramic View of Riemannian Geometry , 2003 .
[98] Walter Stromquist,et al. Locally planar toroidal graphs are 5-colorable , 1982 .
[99] L. J. Boya,et al. On Regular Polytopes , 2012, 1210.0601.
[100] A. O. Houcine. On hyperbolic groups , 2006 .
[101] Oliver Knill,et al. Coloring graphs using topology , 2014, ArXiv.
[102] Oliver Knill. The Euler characteristic of an even-dimensional graph , 2013, ArXiv.
[103] J. Eells. EIGENVALUES IN RIEMANNIAN GEOMETRY (Pure and Applied Mathematics: A Series of Monographs and Textbooks, 115) , 1985 .
[104] R. Forman. Morse Theory for Cell Complexes , 1998 .
[105] Norman Biggs,et al. The roots of combinatorics , 1979 .
[106] R. Forman. The Euler Characteristic Is the Unique Locally Determined Numerical Invariant of Finite Simplicial Complexes which Assigns the Same Number to Every Cone , 2000, Discret. Comput. Geom..
[107] Tatiana Mantuano. Discretization of Riemannian manifolds applied to the Hodge Laplacian , 2006 .
[108] Steve Fisk. Cobordism and functoriality of colorings , 1980 .
[109] Daniel A. Klain. A short proof of Hadwiger's characterization theorem , 1995 .
[110] Über die Curvatura integra geschlossener Hyperflächen , 1926 .
[111] Daniel Hentg Gottlieb,et al. All the Way with Gauss-Bonnet and the Sociology of Mathematics , 1996 .
[112] J. van Leeuwen,et al. Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.
[113] Oliver Knill,et al. The Lusternik-Schnirelmann theorem for graphs , 2012, ArXiv.
[114] Jonathan L. Gross,et al. Topological Graph Theory , 1987, Handbook of Graph Theory.
[115] W. Wu,et al. TOPOLOGICAL INVARIANTS OF NEW TYPE OF FINITE POLYHEDRONS , 1953 .
[116] J. Dieudonne,et al. A History of Algebraic and Differential Topology, 1900 - 1960 , 1989 .
[117] Serguei Norine,et al. Harmonic morphisms and hyperelliptic graphs , 2007, 0707.1309.
[118] Steve Fisk. Variations on coloring, surfaces and higher-dimensional manifolds , 1977 .
[119] C. B. Allendoerfer. The Euler Number of a Riemann Manifold , 1940 .
[120] Jerrold E. Marsden,et al. Discrete Lie Advection of Differential Forms , 2009, Found. Comput. Math..
[121] H. McKean,et al. Curvature and the Eigenvalues of the Laplacian , 1967 .
[122] L. Schläfli. Theorie der vielfachen Kontinuität , 1901 .
[123] Shing-Tung Yau,et al. Graph homotopy and Graham homotopy , 2001, Discret. Math..