Gauss-Bonnet for multi-linear valuations

We prove Gauss-Bonnet and Poincare-Hopf formulas for multi-linear valuations on finite simple graphs G=(V,E) and answer affirmatively a conjecture of Gruenbaum from 1970 by constructing higher order Dehn-Sommerville valuations which vanish for all d-graphs without boundary. An example of a quadratic valuation is the Wu characteristic w(G) which sums (-1)^(dim(x)+dim(y)) over all intersecting pairs of complete subgraphs x,y of a G. More generally, an intersection number w(A,B) sums (-1)^(dim(x)+dim(y)) over pairs x,y, where x is in A and y is in B and x,y intersect. w(G) is a quadratic Euler characteristic X(G), where X sums (-1)^dim(x) over all complete subgraphs x of G. We prove that w is multiplicative, like Euler characteristic: w(G x H) = w(G) w(H) for any two graphs and that w is invariant under Barycentric refinements. We construct a curvature K satisfying Gauss-Bonnet w(G) = sum K(a). We also prove w(G) = X(G)-X(dG) for Euler characteristic X which holds for any d-graph G with boundary dG. We also show higher order Poincare-Hopf formulas: there is for every multi-linear valuation X and function f an index i(a) such that sum i(a)=X(G). For d-graphs G and X=w it agrees with the Euler curvature. For the vanishing multi-valuations which were conjectured to exist, like for the quadratic valuation X(G) = (V X) Y with X=(1,-1,1,-1,1),Y=(0,-2,3,-4,5) on 4-graphs, discrete 4 manifolds, where V_{ij}(G) is the f-matrix counting the number of i and j-simplices in G intersecting, the curvature is constant zero. For all graphs and multi-linear Dehn-Sommerville relations, the Dehn-Sommerville curvature K(v) at a vertex is a Dehn-Sommerville valuation on the unit sphere S(v). We show X V(G) Y = v(G) Y for any linear valuation Y of a d-graph G with f-vector v(G). This provides examples for the Gruenbaum conjecture.

[1]  O. Knill An index formula for simple graphs , 2012, ArXiv.

[2]  J. Whitehead Simplicial Spaces, Nuclei and m‐Groups , 1939 .

[3]  Iraj Saniee,et al.  Large-scale curvature of networks. , 2009, Physical review. E, Statistical, nonlinear, and soft matter physics.

[4]  An integrable evolution equation in geometry , 2013, 1306.0060.

[5]  Oliver Knill,et al.  On the Dimension and Euler characteristic of random graphs , 2011, ArXiv.

[6]  M. Spivak A comprehensive introduction to differential geometry , 1979 .

[7]  Oliver Knill,et al.  A notion of graph homeomorphism , 2014, ArXiv.

[8]  V. Klee A Combinatorial Analogue of Poincaré's Duality Theorem , 1964, Canadian Journal of Mathematics.

[9]  Tom Tucker A RIEMANN-HURWITZ THEOREM IN GRAPH THEORY , 2018 .

[10]  R. Forman Combinatorial Differential Topology and Geometry , 1999 .

[11]  L. A. Santaló Introduction to integral geometry , 1953 .

[12]  X. Gu,et al.  Discrete Curvature Flow for Hyperbolic 3-Manifolds with Complete Geodesic Boundaries , 2008 .

[13]  Oliver Knill,et al.  The graph spectrum of barycentric refinements , 2015, ArXiv.

[14]  F. Frances Yao,et al.  Computational Geometry , 1991, Handbook of Theoretical Computer Science, Volume A: Algorithms and Complexity.

[15]  Daniel J. Kelleher,et al.  Random Walks on Barycentric Subdivisions and the Strichartz Hexacarpet , 2011, Exp. Math..

[16]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[17]  S. Chern A simple instrinsic proof of the Gauss Bonnet formula for closed Riemannian manifolds , 1944 .

[18]  M Morse,et al.  Singular Points of Vector Fields under General Boundary Conditions. , 1928, Proceedings of the National Academy of Sciences of the United States of America.

[19]  Oliver Knill,et al.  The Dirac operator of a graph , 2013, ArXiv.

[20]  Oliver Knill,et al.  The Jordan-Brouwer theorem for graphs , 2015, ArXiv.

[21]  Gabor T. Herman,et al.  Geometry of digital spaces , 1998, Optics & Photonics.

[22]  Yiying Tong,et al.  Discrete differential forms for computational modeling , 2005, SIGGRAPH Courses.

[23]  Daniel A. Klain,et al.  Introduction to Geometric Probability , 1997 .

[24]  J. Jost Riemannian geometry and geometric analysis , 1995 .

[25]  Oliver Knill,et al.  The McKean-Singer Formula in Graph Theory , 2013, ArXiv.

[26]  Daniel A. White,et al.  A Discrete Differential Forms Framework for Computational Electromagnetism , 2004 .

[27]  Serguei Norine,et al.  Riemann–Roch and Abel–Jacobi theory on a finite graph , 2006, math/0608360.

[28]  Robin Forman,et al.  Bochner's Method for Cell Complexes and Combinatorial Ricci Curvature , 2003, Discret. Comput. Geom..

[29]  Oliver Knill,et al.  A Sard theorem for graph theory , 2015, ArXiv.

[30]  Leo Grady,et al.  Discrete Calculus - Applied Analysis on Graphs for Computational Science , 2010 .

[31]  B. Grünbaum Polytopes, graphs, and complexes , 1970 .

[32]  S. Rosenberg The Laplacian on a Riemannian Manifold: The Construction of the Heat Kernel , 1997 .

[33]  Jeremy Gray,et al.  A history of algebraic and differential topology, 1900–1960: By Jean Dieudonné. Boston and Basel (Birkhäuser). 1989. xxi + 648 pp , 1991 .

[34]  Steve Fisk The nonexistence of colorings , 1978, J. Comb. Theory, Ser. B.

[35]  B. Dundas,et al.  DIFFERENTIAL TOPOLOGY , 2002 .

[36]  Alexander V. Ivashchenko Graphs of spheres and tori , 1994, Discret. Math..

[37]  Isabella Novik,et al.  Face numbers of manifolds with boundary , 2015, 1509.05115.

[38]  Charalambos A. Charalambides,et al.  Enumerative combinatorics , 2018, SIGA.

[39]  Oliver Knill,et al.  On index expectation and curvature for networks , 2012, ArXiv.

[40]  T. Banchoff Critical Points and Curvature for Embedded Polyhedral Surfaces , 1970 .

[41]  Willem H. Haemers,et al.  Spectra of Graphs , 2011 .

[42]  Alexander V. Ivashchenko,et al.  Contractible transformations do not change the homology groups of graphs , 1994, Discret. Math..

[44]  Duncan J. Watts,et al.  The Structure and Dynamics of Networks: (Princeton Studies in Complexity) , 2006 .

[45]  I. Holopainen Riemannian Geometry , 1927, Nature.

[46]  Victor Neumann-Lara,et al.  Digital Jordan curves — a graph-theoretical approach to a topological theorem , 1992 .

[47]  Oliver Knill,et al.  A graph theoretical Gauss-Bonnet-Chern Theorem , 2011, ArXiv.

[48]  Oliver Knill,et al.  Classical mathematical structures within topological graph theory , 2014, ArXiv.

[49]  O. Post Spectral Analysis on Graph-like Spaces , 2012 .

[50]  Gábor Hetyei The Stirling Polynomial of a Simplicial Complex , 2006, Discret. Comput. Geom..

[51]  S. Chern Historical Remarks on Gauss-Bonnet , 1990 .

[52]  J. Jost,et al.  Spectra of combinatorial Laplace operators on simplicial complexes , 2011, 1105.2712.

[53]  G. C. Shephard,et al.  Convex Polytopes , 1969, The Mathematical Gazette.

[54]  M. A. Mor'on,et al.  Pascal triangle, Stirling numbers and the unique invariance of the Euler characteristic , 2012, 1202.0663.

[55]  I. Lakatos PROOFS AND REFUTATIONS (I)*† , 1963, The British Journal for the Philosophy of Science.

[56]  Ed Swartz,et al.  Applications of Klee’s Dehn–Sommerville Relations , 2008, Discret. Comput. Geom..

[57]  Li Yu A property that characterizes Euler characteristic among invariants of combinatorial manifolds , 2009, 0903.2523.

[58]  David Richeson Euler's Gem: The Polyhedron Formula and the Birth of Topology , 2008 .

[59]  J. W. Alexander A proof of the invariance of certain constants of analysis situs , 1915 .

[60]  Norman Levitt,et al.  The euler characteristic is the unique locally determined numerical homotopy invariant of finite complexes , 1992, Discret. Comput. Geom..

[61]  Z. Duan,et al.  GRAPH THEORY AND COMPLEX NETWORKS , 2008 .

[62]  Yusuke Higuchi Combinatorial curvature for planar graphs , 2001, J. Graph Theory.

[63]  Alexander V. Evako Dimension on discrete spaces , 1994 .

[64]  G. Ziegler Lectures on Polytopes , 1994 .

[65]  J. Conway,et al.  The Symmetries of Things , 2008 .

[66]  R. Ho Algebraic Topology , 2022 .

[67]  Oliver Knill,et al.  Cauchy-Binet for Pseudo-Determinants , 2013, 1306.0062.

[68]  A. Pressley Elementary Differential Geometry , 2000 .

[69]  Victor Klee,et al.  The Euler Characteristic in Combinatorial Geometry , 1963 .

[70]  Reuven Cohen,et al.  Complex Networks: Structure, Robustness and Function , 2010 .

[71]  Oliver Knill,et al.  Graphs with Eulerian unit spheres , 2015, ArXiv.

[72]  Oliver C. Ibe,et al.  Fundamentals of Stochastic Networks , 2011 .

[73]  Oliver Knill,et al.  The theorems of Green-Stokes,Gauss-Bonnet and Poincare-Hopf in Graph Theory , 2012, ArXiv.

[74]  E. Todeva Networks , 2007 .

[75]  Oliver Knill,et al.  A graph theoretical Poincare-Hopf Theorem , 2012, ArXiv.

[76]  Justin Roberts UNUSUAL FORMULAE FOR THE EULER CHARACTERISTIC , 2002 .

[77]  I. Chavel Eigenvalues in Riemannian geometry , 1984 .

[78]  Oliver Knill,et al.  A discrete Gauss-Bonnet type theorem , 2010, 1009.2292.

[79]  Oliver Knill A Brouwer fixed-point theorem for graph endomorphisms , 2012, ArXiv.

[80]  Matthew L. Wright,et al.  A Hadwiger Theorem for Simplicial Maps , 2014, 1402.6391.

[81]  Oliver Knill,et al.  The zeta function for circular graphs , 2013, ArXiv.

[82]  T. Regge General relativity without coordinates , 1961 .

[83]  Gil Kalai A simple way to tell a simple polytope from its graph , 1988, J. Comb. Theory, Ser. A.

[84]  A. Sard,et al.  The measure of the critical values of differentiable maps , 1942 .

[85]  S. Fisk Geometric coloring theory , 1977 .

[86]  R. Stanley Combinatorics and commutative algebra , 1983 .

[87]  C. B. Allendoerfer,et al.  The Gauss-Bonnet theorem for Riemannian polyhedra , 1943 .

[88]  Christopher Francese,et al.  The Flaw in Euler's Proof of His Polyhedral Formula , 2007, Am. Math. Mon..

[89]  T. Banchoff CRITICAL POINTS AND CURVATURE FOR EMBEDDED POLYHEDRA , 1967 .

[90]  Gordon F. Royle,et al.  Algebraic Graph Theory , 2001, Graduate texts in mathematics.

[91]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[92]  Isospectral deformations of the Dirac operator , 2013, 1306.5597.

[93]  C. Rovelli Zakopane lectures on loop gravity , 2011, 1102.3660.

[94]  Mark E. J. Newman,et al.  Structure and Dynamics of Networks , 2009 .

[95]  Oliver Knill,et al.  Universality for Barycentric subdivision , 2015, ArXiv.

[96]  Piet Van Mieghem,et al.  Graph Spectra for Complex Networks , 2010 .

[97]  Preface A Panoramic View of Riemannian Geometry , 2003 .

[98]  Walter Stromquist,et al.  Locally planar toroidal graphs are 5-colorable , 1982 .

[99]  L. J. Boya,et al.  On Regular Polytopes , 2012, 1210.0601.

[100]  A. O. Houcine On hyperbolic groups , 2006 .

[101]  Oliver Knill,et al.  Coloring graphs using topology , 2014, ArXiv.

[102]  Oliver Knill The Euler characteristic of an even-dimensional graph , 2013, ArXiv.

[103]  J. Eells EIGENVALUES IN RIEMANNIAN GEOMETRY (Pure and Applied Mathematics: A Series of Monographs and Textbooks, 115) , 1985 .

[104]  R. Forman Morse Theory for Cell Complexes , 1998 .

[105]  Norman Biggs,et al.  The roots of combinatorics , 1979 .

[106]  R. Forman The Euler Characteristic Is the Unique Locally Determined Numerical Invariant of Finite Simplicial Complexes which Assigns the Same Number to Every Cone , 2000, Discret. Comput. Geom..

[107]  Tatiana Mantuano Discretization of Riemannian manifolds applied to the Hodge Laplacian , 2006 .

[108]  Steve Fisk Cobordism and functoriality of colorings , 1980 .

[109]  Daniel A. Klain A short proof of Hadwiger's characterization theorem , 1995 .

[110]  Über die Curvatura integra geschlossener Hyperflächen , 1926 .

[111]  Daniel Hentg Gottlieb,et al.  All the Way with Gauss-Bonnet and the Sociology of Mathematics , 1996 .

[112]  J. van Leeuwen,et al.  Discrete and Computational Geometry , 2002, Lecture Notes in Computer Science.

[113]  Oliver Knill,et al.  The Lusternik-Schnirelmann theorem for graphs , 2012, ArXiv.

[114]  Jonathan L. Gross,et al.  Topological Graph Theory , 1987, Handbook of Graph Theory.

[115]  W. Wu,et al.  TOPOLOGICAL INVARIANTS OF NEW TYPE OF FINITE POLYHEDRONS , 1953 .

[116]  J. Dieudonne,et al.  A History of Algebraic and Differential Topology, 1900 - 1960 , 1989 .

[117]  Serguei Norine,et al.  Harmonic morphisms and hyperelliptic graphs , 2007, 0707.1309.

[118]  Steve Fisk Variations on coloring, surfaces and higher-dimensional manifolds , 1977 .

[119]  C. B. Allendoerfer The Euler Number of a Riemann Manifold , 1940 .

[120]  Jerrold E. Marsden,et al.  Discrete Lie Advection of Differential Forms , 2009, Found. Comput. Math..

[121]  H. McKean,et al.  Curvature and the Eigenvalues of the Laplacian , 1967 .

[122]  L. Schläfli Theorie der vielfachen Kontinuität , 1901 .

[123]  Shing-Tung Yau,et al.  Graph homotopy and Graham homotopy , 2001, Discret. Math..