Smartphone Based Human Activity Prediction

Tese de Mestrado Integrado. Bioengenharia. Faculdade de Engenharia. Universidade do Porto. 2013

[1]  Vera Nadales,et al.  Recognition of Human Motion Related Activities from Sensors , 2010 .

[2]  Tâm Huynh,et al.  Human activity recognition with wearable sensors , 2008 .

[3]  Feng Wang,et al.  Research on Classification of Human Daily Activities Based on a Single Tri-Axial Accelerometer , 2011, 2011 First International Workshop on Complexity and Data Mining.

[4]  Ewan Klein,et al.  Natural Language Processing with Python , 2009 .

[5]  Davide Anguita,et al.  Human Activity Recognition on Smartphones Using a Multiclass Hardware-Friendly Support Vector Machine , 2012, IWAAL.

[6]  Daniel P. Siewiorek,et al.  Activity recognition and monitoring using multiple sensors on different body positions , 2006, International Workshop on Wearable and Implantable Body Sensor Networks (BSN'06).

[7]  K. Kuutti Activity theory as a potential framework for human-computer interaction research , 1995 .

[8]  Nigel H. Lovell,et al.  Implementation of a real-time human movement classifier using a triaxial accelerometer for ambulatory monitoring , 2006, IEEE Transactions on Information Technology in Biomedicine.

[9]  Davide Anguita,et al.  A Public Domain Dataset for Human Activity Recognition using Smartphones , 2013, ESANN.

[10]  Claudio Bettini,et al.  COSAR: hybrid reasoning for context-aware activity recognition , 2011, Personal and Ubiquitous Computing.

[11]  Adriana Gabriela Wilde Activity recognition for motion-aware pervasive systems , 2011 .

[12]  Diogo R. Ferreira,et al.  Preprocessing techniques for context recognition from accelerometer data , 2010, Personal and Ubiquitous Computing.

[13]  Nikunj C. Oza,et al.  Online Ensemble Learning , 2000, AAAI/IAAI.

[14]  João Gama,et al.  Semi-supervised learning : predicting activities in Android environment , 2013 .

[15]  Friedrich Foerster,et al.  Motion pattern and posture: Correctly assessed by calibrated accelerometers , 2000, Behavior research methods, instruments, & computers : a journal of the Psychonomic Society, Inc.

[16]  L. Rubenstein,et al.  Falls and their prevention in elderly people: what does the evidence show? , 2006, The Medical clinics of North America.

[17]  Tim Lüth,et al.  Accelerometer based real-time activity analysis on a microcontroller , 2011, 2011 5th International Conference on Pervasive Computing Technologies for Healthcare (PervasiveHealth) and Workshops.

[18]  Ling Bao,et al.  Physical activity recognition from acceleration data under semi-naturalistic conditions , 2003 .

[19]  Ling Bao,et al.  Activity Recognition from User-Annotated Acceleration Data , 2004, Pervasive.

[20]  Adriana G. Wilde An Overview of Human Activity Detection Technologies for Pervasive Systems , 2010 .

[21]  Gang Zhou,et al.  Accurate, Fast Fall Detection Using Gyroscopes and Accelerometer-Derived Posture Information , 2009, 2009 Sixth International Workshop on Wearable and Implantable Body Sensor Networks.

[22]  Ernestina Menasalvas Ruiz,et al.  MARS: A Personalised Mobile Activity Recognition System , 2012, 2012 IEEE 13th International Conference on Mobile Data Management.

[23]  Miguel A. Labrador,et al.  A Survey on Human Activity Recognition using Wearable Sensors , 2013, IEEE Communications Surveys & Tutorials.

[24]  James Fogarty,et al.  iLearn on the iPhone: Real-Time Human Activity Classification on Commodity Mobile Phones , 2008 .

[25]  Tae-Seong Kim,et al.  A single tri-axial accelerometer-based real-time personal life log system capable of human activity recognition and exercise information generation , 2011, Personal and Ubiquitous Computing.

[26]  Sankey V. Williams,et al.  Computer‐Aided Diagnosis , 2005 .