Positive definite functions, Reproducing Kernel Hilbert Spaces and all that

[1]  Hau-San Wong,et al.  Introduction to the Peptide Binding Problem of Computational Immunology: New Results , 2014, Found. Comput. Math..

[2]  Daniel Busby,et al.  Smoothing spline analysis of variance approach for global sensitivity analysis of computer codes , 2013, Reliab. Eng. Syst. Saf..

[3]  Marleen de Bruijne,et al.  Geometric Tree Kernels: Classification of COPD from Airway Tree Geometry , 2013, IPMI.

[4]  Xiaochun Sun,et al.  Nonparametric Method for Genomics-Based Prediction of Performance of Quantitative Traits Involving Epistasis in Plant Breeding , 2012, PloS one.

[5]  Yuedong Wang,et al.  Smoothing Splines: Methods and Applications , 2011 .

[6]  Maria L. Rizzo,et al.  Brownian distance covariance , 2009, 1010.0297.

[7]  Héctor Corrada Bravo,et al.  Examining the relative influence of familial, genetic, and environmental covariate information in flexible risk models , 2009, Proceedings of the National Academy of Sciences.

[8]  Hao Helen Zhang,et al.  Component selection and smoothing in multivariate nonparametric regression , 2006, math/0702659.

[9]  Stephen J. Wright,et al.  Framework for kernel regularization with application to protein clustering. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[10]  A. Berlinet,et al.  Reproducing kernel Hilbert spaces in probability and statistics , 2004 .

[11]  Wensheng Guo Inference in smoothing spline analysis of variance , 2002 .

[12]  Chong Gu Smoothing Spline Anova Models , 2002 .

[13]  Jianqing Fan,et al.  Smoothing spline models for the analysis of nested and crossed samples of curves. Commentaries. Authors' reply , 1998 .

[14]  G. Wahba,et al.  Smoothing spline ANOVA for exponential families, with application to the Wisconsin Epidemiological Study of Diabetic Retinopathy : the 1994 Neyman Memorial Lecture , 1995 .

[15]  G. Wahba,et al.  Smoothing Spline ANOVA with Component-Wise Bayesian “Confidence Intervals” , 1993 .

[16]  G. Wahba Spline Models for Observational Data , 1990 .

[17]  G. Wahba,et al.  Some results on Tchebycheffian spline functions , 1971 .

[18]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .