Generating functions of multi-symplectic RK methods via DW Hamilton–Jacobi equations

The De Donder–Weyl (DW) Hamilton–Jacobi equation is investigated in this paper, and the connection between the DW Hamilton–Jacobi equation and multi-symplectic Hamiltonian system is established. Based on the DW Hamilton–Jacobi theory, generating functions for multi-symplectic Runge–Kutta (RK) methods and partitioned Runge–Kutta (PRK) methods are presented.

[1]  F. Lasagni Canonical Runge-Kutta methods , 1988 .

[2]  S. Reich,et al.  Numerical methods for Hamiltonian PDEs , 2006 .

[3]  E. Hairer,et al.  Geometric Numerical Integration: Structure Preserving Algorithms for Ordinary Differential Equations , 2004 .

[4]  Daniel J. Kleitman,et al.  Heuristic Methods for Solving Large Scale Network Routing Problems: The Telpaking Problem , 1975 .

[5]  J. Marsden,et al.  Discrete mechanics and variational integrators , 2001, Acta Numerica.

[6]  Steve Shkoller,et al.  Second-order multisymplectic field theory: A variational approach to second-order multisymplectic , 1999 .

[7]  H. Weyl Observations on Hilbert's Independence Theorem and Born's Quantization of Field Equations , 1934 .

[8]  DE DONDER-WEYL EQUATIONS AND MULTISYMPLECTIC GEOMETRY * , 2001, math-ph/0107019.

[9]  S. Reich Multi-Symplectic Runge—Kutta Collocation Methods for Hamiltonian Wave Equations , 2000 .

[10]  J. M. Sanz-Serna,et al.  Numerical Hamiltonian Problems , 1994 .

[11]  Mark J. Gotay,et al.  A Multisymplectic Framework for Classical Field Theory and the Calculus of Variations: I. Covariant Hamiltonian Formalism , 1991 .

[12]  Hanno Rund,et al.  The Hamilton-Jacobi theory in the calculus of variations : its role in mathematics and physics , 1967 .

[13]  Jerrold E. Marsden,et al.  Multisymplectic geometry, covariant Hamiltonians, and water waves , 1998, Mathematical Proceedings of the Cambridge Philosophical Society.

[14]  David Lovelock,et al.  Tensors, differential forms, and variational principles , 1975 .

[15]  Jason Frank,et al.  On the multisymplecticity of partitioned Runge–Kutta and splitting methods , 2007, Int. J. Comput. Math..

[16]  Jialin Hong A Survey of Multi-symplectic Runge-Kutta Type Methods for Hamiltonian Partial Differential Equations , 2006 .

[17]  Halzen,et al.  Oscillating atmospheric neutrinos: nu micro/ micro ratio in surface neutrino telescopes. , 1992, Physical review. D, Particles and fields.

[18]  T. Bridges Multi-symplectic structures and wave propagation , 1997, Mathematical Proceedings of the Cambridge Philosophical Society.

[19]  I. Kanatchikov De Donder-Weyl theory and a hypercomplex extension of quantum mechanics to field theory , 1998, hep-th/9810165.

[20]  Ruggero Maria Santilli,et al.  Foundations of Theoretical Mechanics I , 1978 .

[21]  B. Leimkuhler,et al.  Simulating Hamiltonian Dynamics , 2005 .

[22]  Jürgen Moser,et al.  Lectures on Celestial Mechanics , 1971 .

[23]  Hermann Weyl,et al.  Geodesic Fields in the Calculus of Variation for Multiple Integrals , 1935 .

[24]  J. Marsden,et al.  Multisymplectic Geometry, Variational Integrators, and Nonlinear PDEs , 1998, math/9807080.

[25]  Shang Zai Generating Functions for Volume-preserving Mappings and Hamilton-Jacobi Equations for Source-free Dynamical Systems , 1994 .

[26]  P. Olver Applications of lie groups to differential equations , 1986 .

[27]  Geng Sun,et al.  The multi-symplecticity of partitioned Runge-Kutta methods for Hamiltonian PDEs , 2005, Math. Comput..