Periodic structures modified with silver nanoparticles for novel plasmonic application
暂无分享,去创建一个
Morten Madsen | Horst-Günter Rubahn | Mindaugas Andrulevičius | Igoris Prosyčevas | Judita Puišo | Sigitas Tamulevičius | Christian Maibohm | Asta Šileikaitčė | Tomas Tamulevičius | Asta Guobienčė | S. Tamulevičius | H. Rubahn | C. Maibohm | M. Madsen | I. Prosycevas | T. Tamulevičius | M. Andrulevičius | J. Puišo | Asta Šileikaitčė | Asta Guobienčė
[1] J. Puišo,et al. Analysis of Silver Nanoparticles Produced by Chemical Reduction of Silver Salt Solution , 2006 .
[2] S. Ghosh,et al. Self-assembly of silver nanoparticles: synthesis, stabilization, optical properties, and application in surface-enhanced Raman scattering. , 2006, The journal of physical chemistry. B.
[3] Steven R. Emory,et al. Probing Single Molecules and Single Nanoparticles by Surface-Enhanced Raman Scattering , 1997, Science.
[4] Xiaohua Huang,et al. Surface plasmon resonance scattering and absorption of anti-EGFR antibody conjugated gold nanoparticles in cancer diagnostics: applications in oral cancer. , 2005, Nano letters.
[5] C. Haynes,et al. Nanosphere lithography: Tunable localized surface plasmon resonance spectra of silver nanoparticles , 2000 .
[6] Holger Löwe,et al. Chemical micro process engineering : fundamentals, modelling and reactions , 2005 .
[7] Lechner,et al. Metal nanoparticle gratings: influence of dipolar particle interaction on the plasmon resonance , 2000, Physical review letters.
[8] A. Maradudin,et al. Nano-optics of surface plasmon polaritons , 2005 .
[9] Anderson,et al. Threshold effects in light scattering from a binary diffraction grating. , 1996, Physical review. E, Statistical physics, plasmas, fluids, and related interdisciplinary topics.
[10] S. Tamulevičius,et al. Optically variable imaging using nanoimprint technique , 2005 .
[11] Lloyd W. Burgess,et al. Grating Light Reflection Spectroscopy of Colloids and Suspensions , 1997 .
[12] W. Stickle,et al. Handbook of X-Ray Photoelectron Spectroscopy , 1992 .
[13] Michael Giersig,et al. Formation of Colloidal Silver Nanoparticles: Capping Action of Citrate , 1999 .
[14] E. Coronado,et al. The Optical Properties of Metal Nanoparticles: The Influence of Size, Shape, and Dielectric Environment , 2003 .
[15] Edgar Voges,et al. Analysis of plasmon resonance and surface-enhanced Raman scattering on periodic silver structures , 2000 .
[16] D. Meisel,et al. Adsorption and surface-enhanced Raman of dyes on silver and gold sols , 1982 .
[17] Harry A. Atwater,et al. Local detection of electromagnetic energy transport below the diffraction limit in metal nanoparticle plasmon waveguides , 2003, Nature materials.
[18] Michael Vollmer,et al. Optical properties of metal clusters , 1995 .
[19] M. Seah. Summary of ISO/TC 201 Standard: VII ISO 15472 : 2001—surface chemical analysis—x‐ray photoelectron spectrometers—calibration of energy scales , 2001 .
[20] A. A. Hamza,et al. The spectral dispersion curves of highly oriented fibres , 2001 .
[21] P. Kamat,et al. What Factors Control the Size and Shape of Silver Nanoparticles in the Citrate Ion Reduction Method , 2004 .
[22] Edgar Voges,et al. Periodically structured metallic substrates for SERS , 1998 .
[23] M. El-Sayed,et al. Gold and silver nanoparticles in sensing and imaging: sensitivity of plasmon response to size, shape, and metal composition. , 2006, The journal of physical chemistry. B.
[24] R. Azzam,et al. Ellipsometry and polarized light , 1977 .
[25] H. Raether. Surface Plasmons on Smooth and Rough Surfaces and on Gratings , 1988 .