High-contrast gratings as a new platform for integrated optoelectronics

A new concept of dielectric subwavelength grating has emerged. This grating leverages a high contrast in refractive indices for the grating medium and its surroundings. We will discuss how high-index-contrast grating (HCG) can manipulate light to achieve various extraordinary properties. We will discuss various designs to yield broadband, high-reflectivity mirrors for light incident in surface-normal direction and at a glancing angle, ultra high-Q resonators with surface-normal output, planar high focusing power reflectors and lenses, and ultralow loss hollow-core waveguides. The HCG will be a new, promising platform for integrated optics with applications for lasers, filters, waveguides, sensors and detectors.

[1]  Vadim Karagodsky,et al.  Matrix Fabry-Perot resonance mechanism in high-contrast gratings. , 2011, Optics letters.

[2]  N. Moll,et al.  Ultracompact silicon/polymer laser with an absorption-insensitive nanophotonic resonator. , 2010, Nano letters.

[3]  T. Gaylord,et al.  Theoretical Analysis of Subwavelength High Contrast Grating Reflectors References and Links , 2022 .

[4]  J. Mørk,et al.  Broadband MEMS-Tunable High-Index-Contrast Subwavelength Grating Long-Wavelength VCSEL , 2010, IEEE Journal of Quantum Electronics.

[5]  Yi Rao,et al.  1550 nm high contrast grating VCSEL. , 2010, Optics express.

[6]  Vadim Karagodsky,et al.  Planar high-numerical-aperture low-loss focusing reflectors and lenses using subwavelength high contrast gratings. , 2010, Optics express.

[7]  K. Choquette,et al.  Vertical-cavity surface-emitting lasers XIV , 2010 .

[8]  C. Chang-Hasnain,et al.  Long-Wavelength High-Contrast Grating Vertical-Cavity Surface-Emitting Laser , 2010, IEEE Photonics Journal.

[9]  Andreas Tünnermann,et al.  Realization of a monolithic high-reflectivity cavity mirror from a single silicon crystal. , 2010, Physical review letters.

[10]  Il-Sug Chung,et al.  High-index-contrast subwavelength grating VCSEL , 2010, OPTO.

[11]  Zhen Peng,et al.  Flat dielectric grating reflectors with focusing abilities , 2010, 1001.3711.

[12]  Fumio Koyama,et al.  Monolithically integrated multi-wavelength VCSEL arrays using high-contrast gratings. , 2010, Optics express.

[13]  Ye Zhou,et al.  Size effect of high contrast gratings in VCSELs. , 2009, Optics express.

[14]  M. Amann,et al.  Bulk-Micromachined VCSEL At 1.55 $\mu$m With 76-nm Single-Mode Continuous Tuning Range , 2009, IEEE Photonics Technology Letters.

[15]  C. Chang-Hasnain,et al.  High-Q Resonance in Subwavelength High Contrast Gratings , 2009 .

[16]  M. Moewe,et al.  High-Index-Contrast Grating (HCG) and Its Applications in Optoelectronic Devices , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[17]  T. Sakaguchi,et al.  Low Birefringence and 2-D Optical Confinement of Hollow Waveguide With Distributed Bragg Reflector and High-Index-Contrast Grating , 2009, IEEE Photonics Journal.

[18]  Fumio Koyama,et al.  Novel 2D high-contrast grating hollow-core waveguide , 2009, 2009 Conference on Lasers and Electro-Optics and 2009 Conference on Quantum electronics and Laser Science Conference.

[19]  Ye Zhou,et al.  High-Contrast Grating VCSELs , 2009, IEEE Journal of Selected Topics in Quantum Electronics.

[20]  Bala Pesala,et al.  A novel ultra-low loss hollow-core waveguide using subwavelength high-contrast gratings. , 2009, Optics express.

[21]  Ye Zhou,et al.  Surface-normal emission of a high-Q resonator using a subwavelength high-contrast grating. , 2008, Optics express.

[22]  C. Chang-Hasnain,et al.  Large Fabrication Tolerance for VCSELs Using High-Contrast Grating , 2008, IEEE Photonics Technology Letters.

[23]  C. Chang-Hasnain,et al.  A nanoelectromechanical tunable laser , 2008 .

[24]  M. Amann,et al.  1.55-$\mu$m VCSEL Arrays for High-Bandwidth WDM-PONs , 2008, IEEE Photonics Technology Letters.

[25]  Johannes Ostermann,et al.  Polarization-stable monolithic VCSELs , 2008, SPIE OPTO.

[26]  J. Mork,et al.  Subwavelength Grating-Mirror VCSEL With a Thin Oxide Gap , 2008, IEEE Photonics Technology Letters.

[27]  X. Letartre,et al.  Ultimate vertical Fabry-Perot cavity based on single-layer photonic crystal mirrors. , 2007, Optics express.

[28]  Salim Boutami,et al.  Compact and polarization controlled 1.55μm vertical-cavity surface-emitting laser using single-layer photonic crystal mirror , 2007 .

[29]  C. Sydlo,et al.  Impact of Micromechanics on the Linewidth and Chirp Performance of MEMS-VCSELs , 2007, IEEE Journal of Selected Topics in Quantum Electronics.

[30]  C. Chang-Hasnain,et al.  A surface-emitting laser incorporating a high-index-contrast subwavelength grating , 2007 .

[31]  S. Noda,et al.  Ultrahigh-$Q$ Nanocavities in Two-Dimensional Photonic Crystal Slabs , 2006, IEEE Journal of Selected Topics in Quantum Electronics.

[32]  M. Lackner,et al.  CO and CO 2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at ~1.55 μm , 2006 .

[33]  R. Michalzik,et al.  Optimized integrated surface grating design for polarization-stable VCSELs , 2006, IEEE Journal of Quantum Electronics.

[34]  Kan Bun Cheng,et al.  Demonstration of piezoelectric actuated GaAs-based MEMS tunable VCSEL , 2006, IEEE Photonics Technology Letters.

[35]  P. Chavel,et al.  Optical properties of deep lamellar Gratings: A coupled Bloch-mode insight , 2006, Journal of Lightwave Technology.

[36]  Jen-Inn Chyi,et al.  Efficient single-photon sources based on low-density quantum dots in photonic-crystal nanocavities. , 2006, Physical review letters.

[37]  J. Bengtsson,et al.  Design and evaluation of fundamental-mode and polarization-stabilized VCSELs with a subwavelength surface grating , 2006, IEEE Journal of Quantum Electronics.

[38]  Åsa Haglund,et al.  High-power fundamental-mode and polarisation stabilised VCSELs using sub-wavelength surface grating , 2005 .

[39]  Johann Peter Reithmaier,et al.  Semiconductor quantum dot microcavity pillars with high-quality factors and enlarged dot dimensions , 2005 .

[40]  P. Roberts,et al.  Ultimate low loss of hollow-core photonic crystal fibres. , 2005, Optics express.

[41]  Heinrich Kurz,et al.  Ultrahigh-quality-factor silicon-on-insulator microring resonator. , 2004, Optics letters.

[42]  M. Amann,et al.  Continuously tunable long-wavelength MEMS-VCSEL with over 40-nm tuning range , 2004, IEEE Photonics Technology Letters.

[43]  Fumio Koyama,et al.  Control of Group Delay and Chromatic Dispersion in Tunable Hollow Waveguide with Highly Reflective Mirrors , 2004 .

[44]  F. Koyama,et al.  Air Core Thickness Dependence of Propagation Loss of Slab Hollow Waveguide , 2004 .

[45]  Y. Suzuki,et al.  Broad-band mirror (1.12-1.62 /spl mu/m) using a subwavelength grating , 2004, IEEE Photonics Technology Letters.

[46]  C. Chang-Hasnain,et al.  Ultra broadband mirror using sub-wavelength grating , 2004, Conference on Lasers and Electro-Optics, 2004. (CLEO)..

[47]  E. Chow,et al.  Ultra compact biochemical sensor built with two dimensional photonic crystal microcavity , 2004, InternationalQuantum Electronics Conference, 2004. (IQEC)..

[48]  Dai Ohnishi,et al.  Room temperature continuous wave operation of a surface-emitting two-dimensional photonic crystal diode laser. , 2004, Optics express.

[49]  Susumu Noda,et al.  In-plane-type channel drop filter in a two-dimensional photonic crystal slab , 2004 .

[50]  P. Kner,et al.  Long wavelength-tunable VCSELs with optimized MEMS bridge tuning structure , 2004, IEEE Photonics Technology Letters.

[51]  C. Chang-Hasnain,et al.  Ultrabroadband mirror using low-index cladded subwavelength grating , 2004, IEEE Photonics Technology Letters.

[52]  T. J. Kippenberg,et al.  Ultra-high-Q toroid microcavity on a chip , 2003, Nature.

[53]  Y. Troitskiĭ The energy conservation law for optical two-port devices , 2002 .

[54]  C.J. Chang-Hasnain,et al.  Tunable VCSEL , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[55]  K. Iga,et al.  Surface-emitting laser-its birth and generation of new optoelectronics field , 2000, IEEE Journal of Selected Topics in Quantum Electronics.

[56]  R. Baets,et al.  First demonstration of highly reflective and highly polarization selective diffraction gratings (GIRO-gratings) for long-wavelength VCSELs , 1998, IEEE Photonics Technology Letters.

[57]  Kenichi Iga,et al.  InGaAs/GaAs Vertical-Cavity Surface Emitting Laser on GaAs (311)B Substrate Using Carbon Auto-Doping , 1998 .

[58]  Stephen Y. Chou,et al.  Fabrication and performance of thin amorphous Si subwavelength transmission grating for controlling vertical cavity surface emitting laser polarization , 1996 .

[59]  Stephen Y. Chou,et al.  Controlling polarization of vertical-cavity surface-emitting lasers using amorphous silicon subwavelength transmission gratings , 1996 .

[60]  T. Wipiejewski,et al.  Vertical-cavity surface-emitting laser diodes with post-growth wavelength adjustment , 1995, IEEE Photonics Technology Letters.

[61]  James S. Harris,et al.  Multiple-wavelength vertical cavity laser arrays on patterned substrates , 1995 .

[62]  Mrt Tan,et al.  Intensity noise of large area vertical cavity surface emitting lasers in multimode optical fibre links , 1994 .

[63]  J. McMullin,et al.  Hollow metallic waveguides in silicon V-grooves , 1993, IEEE Photonics Technology Letters.

[64]  Larry A. Coldren,et al.  Efficient vertical-cavity lasers , 1992 .

[65]  Chung-En Zah,et al.  Multiple wavelength tunable surface-emitting laser arrays , 1991 .

[66]  J. P. Harbison,et al.  Dynamic, polarization, and transverse mode characteristics of vertical cavity surface emitting lasers , 1991 .

[67]  S F Habiby,et al.  Binary phase Fresnel lenses for generation of two-dimensional beam arrays. , 1991, Applied optics.

[68]  C. Chang-Hasnain,et al.  Use of a multiwavelength surface-emitting laser array in a four-channel wavelength-division-multiplexed system experiment , 1991, IEEE Photonics Technology Letters.

[69]  J. P. Harbison,et al.  Matrix addressable vertical cavity surface emitting laser array , 1991 .

[70]  H. Nishihara,et al.  Laser beam lithographed micro-Fresnel lenses. , 1990, Applied optics.

[71]  J. Harbison,et al.  Surface emitting laser arrays with uniformly separated wavelengths , 1990, 12th IEEE International Conference on Semiconductor Laser.

[72]  T. Mitsuyu,et al.  Reflection micro-Fresnel lenses and their use in an integrated focus sensor. , 1989, Applied Optics.

[73]  Axel Scherer,et al.  Lasing characteristics of GaAs microresonators , 1989 .

[74]  Kenichi Iga,et al.  GaAlAs/GaAs MOCVD Growth for Surface Emitting Laser , 1987 .

[75]  H. Nishihara,et al.  Blazed gratings and Fresnel lenses fabricated by electron-beam lithography. , 1982, Optics letters.

[76]  T. Gaylord,et al.  Rigorous coupled-wave analysis of planar-grating diffraction , 1981 .

[77]  D. C. Shaver,et al.  X-ray zone plates fabricated using electron-beam and x-ray lithography , 1979 .

[78]  G. Bohm,et al.  Simultaneous Spectroscopy of NH$_{3}$ and CO Using a ${> 50}\hbox{ nm}$ Continuously Tunable MEMS-VCSEL , 2007, IEEE Sensors Journal.

[79]  Hubert Halbritter,et al.  CO and CO2 spectroscopy using a 60 nm broadband tunable MEMS-VCSEL at approximately 1.55 microm. , 2006, Optics letters.

[80]  Connie J. Chang-Hasnain,et al.  VCSEL for Metro Communications , 2002 .

[81]  C. Chang-Hasnain,et al.  Widely and continuously tunable micromachined resonant cavity detector with wavelength tracking , 1996, IEEE Photonics Technology Letters.

[82]  E.C.M. Pennings,et al.  Optical multi-mode interference devices based on self-imaging: principles and applications , 1995 .

[83]  N. Hatori,et al.  Wavelength control of vertical cavity surface-emitting lasers by using nonplanar MOCVD , 1995, IEEE Photonics Technology Letters.

[84]  Hermann A. Haus,et al.  Narrow-band distributed feedback reflector design , 1991 .

[85]  T. Shiono,et al.  Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development. , 1990, Optics letters.