Deterministic Dependency Parsing of English Text

This paper presents a deterministic dependency parser based on memory-based learning, which parses English text in linear time. When trained and evaluated on the Wall Street Journal section of the Penn Treebank, the parser achieves a maximum attachment score of 87.1%. Unlike most previous systems, the parser produces labeled dependency graphs, using as arc labels a combination of bracket labels and grammatical role labels taken from the Penn Treebank II annotation scheme. The best overall accuracy obtained for identifying both the correct head and the correct arc label is 86.0%, when restricted to grammatical role labels (7 labels), and 84.4% for the maximum set (50 labels).

[1]  Walter Daelemans,et al.  TiMBL: Tilburg Memory-Based Learner, version 2.0, Reference guide , 1998 .

[2]  Walter Daelemans,et al.  Introduction to the special issue on memory-based language processing , 1999, J. Exp. Theor. Artif. Intell..

[3]  Eugene Charniak,et al.  A Maximum-Entropy-Inspired Parser , 2000, ANLP.

[4]  Yuji Matsumoto,et al.  Japanese Dependency Structure Analysis Based on Support Vector Machines , 2000, EMNLP.

[5]  Michael Collins,et al.  Head-Driven Statistical Models for Natural Language Parsing , 2003, CL.

[6]  Eugene Charniak,et al.  Assigning Function Tags to Parsed Text , 2000, ANLP.

[7]  David M. Magerman Statistical Decision-Tree Models for Parsing , 1995, ACL.

[8]  Beatrice Santorini,et al.  Building a Large Annotated Corpus of English: The Penn Treebank , 1993, CL.

[9]  Walter Daelemans,et al.  Forgetting Exceptions is Harmful in Language Learning , 1998, Machine Learning.

[10]  Dekang Lin,et al.  Dependency-Based Evaluation of Minipar , 2003 .

[11]  David W. Aha,et al.  Lazy Learning , 1997, Springer Netherlands.

[12]  Joakim Nivre,et al.  Memory-Based Dependency Parsing , 2004, CoNLL.

[13]  Ann Bies,et al.  Bracketing Guidelines for Treebank II Style , 2002 .

[14]  Vladimir N. Vapnik,et al.  The Nature of Statistical Learning Theory , 2000, Statistics for Engineering and Information Science.

[15]  David L. Waltz,et al.  Toward memory-based reasoning , 1986, CACM.

[16]  Ted Briscoe,et al.  Parser evaluation: a survey and a new proposal , 1998, LREC.

[17]  J. L. Hodges,et al.  Discriminatory Analysis - Nonparametric Discrimination: Consistency Properties , 1989 .

[18]  Walter Daelemans,et al.  A Memory-Based Alternative for Connectionist Shift-Reduce Parsing , 2000 .

[19]  Joakim Nivre,et al.  An Efficient Algorithm for Projective Dependency Parsing , 2003, IWPT.

[20]  Ann Bies,et al.  Bracketing Guidelines For Treebank II Style Penn Treebank Project , 1995 .

[21]  Sahibsingh A. Dudani The Distance-Weighted k-Nearest-Neighbor Rule , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[22]  M. Banko,et al.  Analogical Modeling of Language , 1991, CL.

[23]  S. Buchholz,et al.  Memory-Based Grammatical Relation Finding , 2002 .

[24]  Yuji Matsumoto,et al.  Statistical Dependency Analysis with Support Vector Machines , 2003, IWPT.

[25]  Michael Collins,et al.  A Statistical Parser for Czech , 1999, ACL.

[26]  Michael Collins,et al.  A New Statistical Parser Based on Bigram Lexical Dependencies , 1996, ACL.

[27]  John D. Lafferty,et al.  Towards History-based Grammars: Using Richer Models for Probabilistic Parsing , 1993, ACL.

[28]  Steven Salzberg,et al.  A Weighted Nearest Neighbor Algorithm for Learning with Symbolic Features , 2004, Machine Learning.

[29]  D. Kibler,et al.  Instance-based learning algorithms , 2004, Machine Learning.

[30]  M. Trautner,et al.  The Danish Dependency Treebank and the DTAG Treebank Tool , 2003 .

[31]  Jason Eisner,et al.  Three New Probabilistic Models for Dependency Parsing: An Exploration , 1996, COLING.

[32]  Michael Collins,et al.  Three Generative, Lexicalised Models for Statistical Parsing , 1997, ACL.

[33]  Royal Skousen Analogy and Structure , 1992, Springer Netherlands.