Penalization of Dirichlet optimal control problems

We apply Robin penalization to Dirichlet optimal control problems governed by semilinear elliptic equations. Error estimates in terms of the penalization parameter are stated. The results are compared with some previous ones in the literature and are checked by a numerical experiment. A detailed study of the regularity of the solutions of the PDEs is carried out.

[1]  Jean-Pierre Raymond,et al.  Boundary control of semilinear elliptic equations with discontinuous leading coefficients and unbounded controls , 1997 .

[2]  S. Ravindran,et al.  A Penalized Neumann Control Approach for Solving an Optimal Dirichlet Control Problem for the Navier--Stokes Equations , 1998 .

[3]  Faker Ben Belgacem,et al.  Singular perturbation for the Dirichlet boundary control of elliptic problems , 2003 .

[4]  Carlos E. Kenig,et al.  The Inhomogeneous Dirichlet Problem in Lipschitz Domains , 1995 .

[5]  Jean-Pierre Raymond,et al.  Stokes and Navier-Stokes equations with nonhomogeneous boundary conditions , 2007 .

[6]  Jean-Pierre Raymond,et al.  The Stability in W s,p (Γ) Spaces of L 2-Projections on Some Convex Sets , 2006 .

[7]  Jean-Pierre Raymond,et al.  A penalized Robin approach for solving a parabolic equation with nonsmooth Dirichlet boundary conditions , 2003 .

[8]  G. Stampacchia,et al.  Inverse Problem for a Curved Quantum Guide , 2012, Int. J. Math. Math. Sci..

[9]  Chia-Ven Pao,et al.  Nonlinear parabolic and elliptic equations , 1993 .

[10]  Martin Costabel,et al.  A singularly perturbed mixed boundary value problem , 1996 .

[11]  Costabel Martin,et al.  A Singularly mixed boundary value problem , 1996 .

[12]  David Jerison,et al.  The Neumann problem on Lipschitz domains , 1981 .

[13]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of a Semilinear Elliptic Control Problem , 2002, Comput. Optim. Appl..

[14]  Jean-Pierre Raymond,et al.  ESTIMATES FOR THE NUMERICAL APPROXIMATION OF DIRICHLET BOUNDARY CONTROL FOR SEMILINEAR ELLIPTIC EQUATIONS , 2006 .

[15]  Eduardo Casas,et al.  Error estimates for the numerical approximation of Neumann control problems , 2008, Comput. Optim. Appl..

[16]  P. G. Ciarlet,et al.  Basic error estimates for elliptic problems , 1991 .

[17]  P. Grisvard Elliptic Problems in Nonsmooth Domains , 1985 .

[18]  Fredi Tröltzsch,et al.  Error Estimates for the Numerical Approximation of Boundary Semilinear Elliptic Control Problems , 2005, Comput. Optim. Appl..

[19]  I. Babuska The Finite Element Method with Penalty , 1973 .

[20]  Zhonghai Ding,et al.  A proof of the trace theorem of Sobolev spaces on Lipschitz domains , 1996 .