Semiparametric modeling of autonomous nonlinear dynamical systems with application to plant growth

We propose a semi-parametric model for autonomous nonlinear dynamical systems and devise an estimation procedure for model fltting. This model incorporates subject-speciflc efiects and can be viewed as a nonlinear semi-parametric mixed efiects model. We also propose a computationally e‐cient model selection procedure. We show by simulation studies that the proposed estimation as well as model selection procedures can e‐ciently handle sparse and noisy measurements. Finally, we apply the proposed method to a plant growth data used to study growth displacement rates within meristems of maize roots under two difierent experimental conditions.

[1]  P. Diggle,et al.  Analysis of Longitudinal Data. , 1997 .

[2]  Hulin Wu,et al.  Estimation of time-varying parameters in deterministic dynamic models , 2008 .

[3]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[4]  H Wu,et al.  Population HIV‐1 Dynamics In Vivo: Applicable Models and Inferential Tools for Virological Data from AIDS Clinical Trials , 1999, Biometrics.

[5]  Jie Peng,et al.  A Geometric Approach to Maximum Likelihood Estimation of the Functional Principal Components From Sparse Longitudinal Data , 2007, 0710.5343.

[6]  Stephen J. Wright,et al.  Numerical Optimization , 2018, Fundamental Statistical Inference.

[7]  N. Brunel Parameter estimation of ODE’s via nonparametric estimators , 2007, 0710.4190.

[8]  J. Lynch,et al.  A Novel Image-Analysis Technique for Kinematic Study of Growth and Curvature1[W][OA] , 2007, Plant Physiology.

[9]  Prabir Burman,et al.  Estimation of generalized additive models , 1990 .

[10]  J. Phair,et al.  The Multicenter AIDS Cohort Study: rationale, organization, and selected characteristics of the participants. , 1987, American journal of epidemiology.

[11]  B. Perthame Transport Equations in Biology , 2006 .

[12]  Hulin Wu,et al.  Differential Equation Modeling of HIV Viral Fitness Experiments: Model Identification, Model Selection, and Multimodel Inference , 2009, Biometrics.

[13]  W. Silk,et al.  Effects of low water potential on cortical cell length in growing regions of maize roots. , 1990, Plant physiology.

[14]  P. James McLellan,et al.  Parameter estimation in continuous-time dynamic models using principal differential analysis , 2006, Comput. Chem. Eng..

[15]  Chong Gu Smoothing Spline Anova Models , 2002 .

[16]  Jiguo Cao,et al.  Estimating a Predator‐Prey Dynamical Model with the Parameter Cascades Method , 2008, Biometrics.

[17]  V De Gruttola,et al.  Estimation of HIV dynamic parameters. , 1998, Statistics in medicine.

[18]  U. Rascher,et al.  Functional dynamics of plant growth and photosynthesis--from steady-state to dynamics--from homogeneity to heterogeneity. , 2006, Plant, cell & environment.

[19]  Yuedong Wang,et al.  Semiparametric Nonlinear Mixed-Effects Models and Their Applications , 2001 .

[20]  N. G. Parke,et al.  Ordinary Differential Equations. , 1958 .

[21]  M. Nowak,et al.  Virus dynamics: Mathematical principles of immunology and virology , 2001 .

[22]  Hulin Wu,et al.  Hierarchical Bayesian Methods for Estimation of Parameters in a Longitudinal HIV Dynamic System , 2006, Biometrics.

[23]  Lennart Ljung,et al.  Modeling Of Dynamic Systems , 1994 .

[24]  P. Burman,et al.  Effect of Water Stress on Cortical Cell Division Rates within the Apical Meristem of Primary Roots of Maize , 1997, Plant physiology.

[25]  D Commenges,et al.  Maximum Likelihood Estimation in Dynamical Models of HIV , 2007, Biometrics.

[26]  J. Nelder,et al.  Generalized Linear Models with Random Effects: Unified Analysis via H-likelihood , 2006 .

[27]  Steven H. Strogatz,et al.  Nonlinear Dynamics and Chaos , 2024 .

[28]  Hulin Wu,et al.  Estimation of Smooth Time-Varying Parameters in State Space Models , 2007 .

[29]  Lang Li,et al.  Estimation and Inference for a Spline‐Enhanced Population Pharmacokinetic Model , 2002, Biometrics.

[30]  P. Hartman Ordinary Differential Equations , 1965 .

[31]  N. Kirchgeßner,et al.  Spatio-temporal dynamics of expansion growth in roots: automatic quantification of diurnal course and temperature response by digital image sequence processing. , 2002, Journal of experimental botany.

[32]  B. Silverman,et al.  Functional Data Analysis , 1997 .

[33]  J. Varah A Spline Least Squares Method for Numerical Parameter Estimation in Differential Equations , 1982 .

[34]  Hulin Wu,et al.  Efficient Local Estimation for Time-Varying Coefficients in Deterministic Dynamic Models With Applications to HIV-1 Dynamics , 2008 .

[35]  S. Strogatz Nonlinear Dynamics and Chaos: With Applications to Physics, Biology, Chemistry and Engineering , 1995 .

[36]  Jiguo Cao,et al.  Parameter estimation for differential equations: a generalized smoothing approach , 2007 .

[37]  Jie Peng,et al.  Semiparametric modeling of autonomous nonlinear dynamical systems with applications , 2009, 0906.3501.

[38]  Henry W. Altland,et al.  Applied Functional Data Analysis , 2003, Technometrics.