Analysis of Iterative Methods in Photoacoustic Tomography with Variable Sound Speed

In this article, we revisit iterative methods for solving the inverse source problem of photoacoustic tomography in free space. Recently, there have been interesting developments on explicit formulations of the adjoint operator, demonstrating that iterative methods are an attractive choice for photoacoustic image reconstruction. In this work, we propose several modifications of current formulations of the adjoint operator which help speed up the convergence and yield improved error estimates. We establish a stability analysis and show that, with our choices of the adjoint operator, the iterative methods can achieve a linear rate of convergence, in the $L^2$-norm as well as $H^1$-norm. In addition, we analyze the normal operator from the microlocal analysis point of view. This gives insight into the convergence speed of the iterative methods and choosing proper weights for the mapping spaces. Finally, we present numerical results using various iterative reconstruction methods for full as well as limited vi...

[1]  François Treves,et al.  Introduction to Pseudodifferential and Fourier Integral Operators , 1980 .

[2]  Peter Kuchment,et al.  Uniqueness of reconstruction and an inversion procedure for thermoacoustic and photoacoustic tomography with variable sound speed , 2007, 0706.0598.

[3]  Linh V. Nguyen On Artifacts in Limited Data Spherical Radon Transform: Flat Observation Surfaces , 2014, SIAM J. Math. Anal..

[4]  J. Daniel The Conjugate Gradient Method for Linear and Nonlinear Operator Equations , 1967 .

[5]  Mark A. Anastasio,et al.  Photoacoustic and Thermoacoustic Tomography: Image Formation Principles , 2015, Handbook of Mathematical Methods in Imaging.

[6]  Mark A. Anastasio,et al.  Full-Wave Iterative Image Reconstruction in Photoacoustic Tomography With Acoustically Inhomogeneous Media , 2013, IEEE Transactions on Medical Imaging.

[7]  Yulia Hristova,et al.  Time reversal in thermoacoustic tomography—an error estimate , 2008, 0812.0606.

[8]  Markus Haltmeier,et al.  Inversion of Spherical Means and the Wave Equation in Even Dimensions , 2007, SIAM J. Appl. Math..

[9]  M. Czubak,et al.  PSEUDODIFFERENTIAL OPERATORS , 2020, Introduction to Partial Differential Equations.

[10]  Marc Teboulle,et al.  A Fast Iterative Shrinkage-Thresholding Algorithm for Linear Inverse Problems , 2009, SIAM J. Imaging Sci..

[11]  Lea Fleischer,et al.  Regularization of Inverse Problems , 1996 .

[12]  Ekkehard W. Sachs,et al.  Superlinear Convergence of Krylov Subspace Methods for Self-Adjoint Problems in Hilbert Space , 2015, SIAM J. Numer. Anal..

[13]  Michael V. Klibanov,et al.  The Quasi-Reversibility Method for Thermoacoustic Tomography in a Heterogeneous Medium , 2007, SIAM J. Sci. Comput..

[14]  Lihong V. Wang,et al.  Limited view thermoacoustic tomography , 2002, Proceedings of the Second Joint 24th Annual Conference and the Annual Fall Meeting of the Biomedical Engineering Society] [Engineering in Medicine and Biology.

[15]  Linh V. Nguyen On singularities and instability of reconstruction in thermoacoustic tomography , 2009 .

[16]  Linh V. Nguyen,et al.  Reconstruction and time reversal in thermoacoustic tomography in acoustically homogeneous and inhomogeneous media , 2008 .

[17]  Otmar Scherzer,et al.  Thermoacoustic computed tomography with large planar receivers , 2004 .

[18]  Simon R. Arridge,et al.  On the adjoint operator in photoacoustic tomography , 2016, 1602.02027.

[19]  G. Uhlmann,et al.  Thermoacoustic tomography with variable sound speed , 2009, 0902.1973.

[20]  V. Ntziachristos,et al.  Acoustic Inversion in Optoacoustic Tomography: A Review , 2013, Current medical imaging reviews.

[21]  T. D. Mast,et al.  A k-space method for large-scale models of wave propagation in tissue , 2001, IEEE Transactions on Ultrasonics, Ferroelectrics and Frequency Control.

[22]  L. Hörmander The analysis of linear partial differential operators , 1990 .

[23]  Markus Haltmeier,et al.  Universal Inversion Formulas for Recovering a Function from Spherical Means , 2012, SIAM J. Math. Anal..

[24]  Eric Todd Quinto,et al.  Artifacts in Incomplete Data Tomography with Applications to Photoacoustic Tomography and Sonar , 2014, SIAM J. Appl. Math..

[25]  M. Z. Nashed,et al.  On the Convergence of the Conjugate Gradient Method for Singular Linear Operator Equations , 1972 .

[26]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[27]  Linh V. Nguyen,et al.  A Dissipative Time Reversal Technique for Photoacoustic Tomography in a Cavity , 2015, SIAM J. Imaging Sci..

[28]  William Rundell,et al.  Surveys on solution methods for inverse problems , 2000 .

[29]  P. Kuchment,et al.  Mathematics of thermoacoustic tomography , 2007, European Journal of Applied Mathematics.

[30]  Hyunjoong Kim,et al.  Functional Analysis I , 2017 .

[31]  Rakesh,et al.  Determining a Function from Its Mean Values Over a Family of Spheres , 2004, SIAM J. Math. Anal..

[32]  Jurgen Frikel,et al.  On Artifacts in Limited Data Spherical Radon Transform: Curved Observation Surface , 2014 .

[33]  Leonid Kunyansky A series solution and a fast algorithm for the inversion of the spherical mean Radon transform , 2007 .

[34]  Dimple Modgil,et al.  Image reconstruction in photoacoustic tomography with variable speed of sound using a higher-order geometrical acoustics approximation. , 2010, Journal of biomedical optics.

[35]  Sebastian Acosta,et al.  Multiwave imaging in an enclosure with variable wave speed , 2015, 1501.07808.

[36]  Roland Glowinski,et al.  Iterative Solution of Linear Variational Problems in Hilbert Spaces: Some Conjugate Gradients Success Stories , 2004 .

[37]  O. Nevanlinna Convergence of Iterations for Linear Equations , 1993 .

[38]  B T Cox,et al.  k-Wave: MATLAB toolbox for the simulation and reconstruction of photoacoustic wave fields. , 2010, Journal of biomedical optics.

[39]  Otmar Scherzer,et al.  Circular integrating detectors in photo and thermoacoustic tomography , 2009 .

[40]  Linh V. Nguyen A family of inversion formulas in thermoacoustic tomography , 2009, 0902.2579.

[41]  E. T. Quinto,et al.  Local Tomographic Methods in Sonar , 2000 .

[42]  V. Palamodov A uniform reconstruction formula in integral geometry , 2011, 1111.6514.

[43]  M. Hanke Conjugate gradient type methods for ill-posed problems , 1995 .

[44]  Otmar Scherzer,et al.  Thermoacoustic tomography using optical line detection , 2005, European Conference on Biomedical Optics.

[45]  Frank Natterer,et al.  Photo-acoustic inversion in convex domains , 2012 .

[46]  Otmar Scherzer,et al.  A direct method for photoacoustic tomography with inhomogeneous sound speed , 2015, 1507.01741.

[47]  M. Hestenes,et al.  Methods of conjugate gradients for solving linear systems , 1952 .

[48]  T. D. Mast,et al.  A k-space method for coupled first-order acoustic propagation equations. , 2002, The Journal of the Acoustical Society of America.

[49]  J. Lions,et al.  Non homogeneous boundary value problems for second order hyperbolic operators , 1986 .

[50]  M. Haltmeier,et al.  Exact and approximative imaging methods for photoacoustic tomography using an arbitrary detection surface. , 2007, Physical review. E, Statistical, nonlinear, and soft matter physics.

[51]  Otmar Scherzer,et al.  Thermoacoustic tomography using a fiber-based Fabry-Perot interferometer as an integrating line detector , 2006, SPIE BiOS.

[52]  L. Kunyansky,et al.  Explicit inversion formulae for the spherical mean Radon transform , 2006, math/0609341.

[53]  Hongkai Zhao,et al.  An Efficient Neumann Series-Based Algorithm for Thermoacoustic and Photoacoustic Tomography with Variable Sound Speed , 2011, SIAM J. Imaging Sci..

[54]  B T Cox,et al.  k-space propagation models for acoustically heterogeneous media: application to biomedical photoacoustics. , 2007, The Journal of the Acoustical Society of America.

[55]  Zenon Fortuna Some Convergence Properties of the Conjugate Gradient Method in Hilbert Space , 1979 .

[56]  J. Lions,et al.  Non-homogeneous boundary value problems and applications , 1972 .

[57]  O. Axelsson,et al.  ON THE RATE OF CONVERGENCE OF THE CONJUGATE GRADIENT METHOD FOR LINEAR OPERATORS IN HILBERT SPACE , 2002 .

[58]  Peter Kuchment,et al.  The Radon Transform and Medical Imaging , 2014, CBMS-NSF regional conference series in applied mathematics.

[59]  Yang Yang,et al.  Multiwave tomography with reflectors: Landweber's iteration , 2016, 1603.07045.

[60]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .

[61]  Kent-André Mardal,et al.  Preconditioning discretizations of systems of partial differential equations , 2011, Numer. Linear Algebra Appl..

[62]  Mark A. Anastasio,et al.  An Imaging Model Incorporating Ultrasonic Transducer Properties for Three-Dimensional Optoacoustic Tomography , 2011, IEEE Transactions on Medical Imaging.

[63]  H. Brezis Functional Analysis, Sobolev Spaces and Partial Differential Equations , 2010 .

[64]  Vasilis Ntziachristos,et al.  Accurate Model-Based Reconstruction Algorithm for Three-Dimensional Optoacoustic Tomography , 2012, IEEE Transactions on Medical Imaging.

[65]  Plamen Stefanov,et al.  Thermoacoustic tomography arising in brain imaging , 2010, 1009.1687.

[66]  M. Anastasio,et al.  Investigation of iterative image reconstruction in three-dimensional optoacoustic tomography , 2012, Physics in medicine and biology.

[67]  Markus Haltmeier,et al.  Inversion of circular means and the wave equation on convex planar domains , 2012, Comput. Math. Appl..