Common Sense: The Dark Matter of Language and Intelligence

Scal e appears to be the winning recipe in today’s leaderboards. And yet, extreme-scale neural models are (un)surprisingly brittle and make errors that are often nonsensical and even counterintuitive. In this talk, I will argue for the importance of knowledge, especially commonsense knowledge, as well as inference-time reasoning algorithms, and demonstrate how smaller models developed in academia can still have an edge over larger industry-scale models, if powered with knowledge and/or reasoning algorithms.