Large-force electrothermal linear micromotors

Electrothermal linear micromotors fabricated by deep reactive ion etching of silicon-on-insulator wafers are presented. These high-aspect-ratio motors are powered by thermal actuator arrays with a height of 50 µm. Synchronized arrays, each containing ten actuators connected by a midpoint yoke, are used to advance a slider through frictional contact. Forces of 6.7 mN have been demonstrated at a voltage of 12 V using motors measuring 2.5 mm by 2.1 mm. Unidirectional motors have been successfully operated at speeds of up to 1 mm s−1 over a range in excess of 2 mm. Motors are found to be well suited for positioning compliant mechanisms and similar applications requiring large forces and displacements at low drive voltages.

[1]  Norman C. Tien,et al.  Low voltage electrothermal vibromotor for silicon optical bench applications , 2000 .

[2]  Victor M. Bright,et al.  Automated assembly of flip-up micromirrors , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[3]  G. L. Pearson,et al.  Electrical Properties of Pure Silicon and Silicon Alloys Containing Boron and Phosphorus , 1949 .

[4]  Timothy W. McLain,et al.  Modeling the thermal behavior of a surface-micromachined linear-displacement thermomechanical microactuator , 2002 .

[5]  A. Geisberger,et al.  Electrothermal properties and modeling of polysilicon microthermal actuators , 2003 .

[6]  Linear Thermomechanical Microactuators , 1999, Micro-Electro-Mechanical Systems (MEMS).

[7]  M. Baltzer,et al.  A linear stepping actuator in surface micromachining technology for low voltages and large displacements , 1997, Proceedings of International Solid State Sensors and Actuators Conference (Transducers '97).

[9]  Neville K. S. Lee,et al.  Analysis and design of polysilicon thermal flexure actuator , 1999 .

[10]  L. L. Chu,et al.  Bent-beam electrothermal actuators-Part II: Linear and rotary microengines , 2001 .

[11]  Frank P. Incropera,et al.  Fundamentals of Heat and Mass Transfer , 1981 .

[12]  R. Muller,et al.  Linear microvibromotor for positioning optical components , 1995 .

[13]  T. Hubbard,et al.  Time and frequency response of two-arm micromachined thermal actuators , 2003 .

[14]  Y. Gianchandani,et al.  Bent-beam electrothermal actuators-Part I: Single beam and cascaded devices , 2001 .

[15]  R. Jaeger Introduction to microelectronic fabrication , 1987 .

[16]  Miko Elwenspoek,et al.  Design, fabrication and testing of laterally driven electrostatic motors employing walking motion and mechanical leverage , 2000 .

[17]  G. K. Ananthasuresh,et al.  Comprehensive thermal modelling and characterization of an electro-thermal-compliant microactuator , 2001 .

[18]  L. L. Chu,et al.  Bent-Beam Electrothermal Actuators: Linear and Rotary MicroEngines , 2000 .

[19]  Kurt E. Petersen,et al.  Process for in-plane and out-of-plane single-crystal-silicon thermal microactuators , 1996 .

[20]  K. Pister,et al.  Single mask, large force, and large displacement electrostatic linear inchworm motors , 2001, Technical Digest. MEMS 2001. 14th IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.01CH37090).

[21]  Y. S. Touloukian Thermophysical properties of matter , 1970 .

[22]  Mu Chiao,et al.  Electrothermal responses of lineshape microstructures , 1996 .

[23]  Ho Nam Kwon,et al.  Design and characterization of a micromachined inchworm motor with thermoelastic linkage actuators , 2002 .

[24]  Jong Hyun Lee,et al.  Characterization of a micromachined inchworm motor with thermoelastic linkage actuators , 2002, Technical Digest. MEMS 2002 IEEE International Conference. Fifteenth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.02CH37266).