A Simple Proof That Super-Consistency Implies Cut Elimination
暂无分享,去创建一个
[1] A. Troelstra,et al. Constructivism in Mathematics: An Introduction , 1988 .
[2] J. Girard. Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .
[3] Dag Prawitz. Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..
[4] Claude Kirchner,et al. HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.
[5] Mitsuhiro Okada,et al. A uniform semantic proof for cut-elimination and completeness of various first and higher order logics , 2002, Theor. Comput. Sci..
[6] Kurt Schutte. Syntactical and Semantical Properties of Simple Type Theory , 1960 .
[7] Claude Kirchner,et al. Theorem Proving Modulo , 2003, Journal of Automated Reasoning.
[8] Peter B. Andrews. Resolution in type theory , 1971, Journal of Symbolic Logic.
[9] Gilles Dowek,et al. Truth Values Algebras and Proof Normalization , 2006, TYPES.
[10] Olivier Hermant,et al. Semantic Cut Elimination in the Intuitionistic Sequent Calculus , 2005, TLCA.
[11] Satoko Titani. A Proof of the Cut-Elimination Theorem in Simple Type Theory , 1973, J. Symb. Log..
[12] W. W. Tait,et al. A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .
[13] James Lipton,et al. A Constructive Semantic Approach to Cut Elimination in Type Theories with Axioms , 2008, CSL.
[14] Alonzo Church,et al. A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.
[15] James Lipton,et al. Completeness and Cut-elimination in the Intuitionistic Theory of Types , 2005, J. Log. Comput..
[16] Gilles Dowek,et al. Proof normalization modulo , 1998, Journal of Symbolic Logic.
[17] Mitsuhiro Okada. Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..