A Simple Proof That Super-Consistency Implies Cut Elimination

We give a simple and direct proof that super-consistency implies cut elimination in deduction modulo. This proof can be seen as a simplification of the proof that super-consistency implies proof normalization. It also takes ideas from the semantic proofs of cut elimination that proceed by proving the completeness of the cut free calculus. In particular, it gives a generalization, to all super-consistent theories, of the notion of V-complex, introduced in the semantic cut elimination proofs for simple type theory.

[1]  A. Troelstra,et al.  Constructivism in Mathematics: An Introduction , 1988 .

[2]  J. Girard Une Extension De ĽInterpretation De Gödel a ĽAnalyse, Et Son Application a ĽElimination Des Coupures Dans ĽAnalyse Et La Theorie Des Types , 1971 .

[3]  Dag Prawitz Hauptsatz for Higher Order Logic , 1968, J. Symb. Log..

[4]  Claude Kirchner,et al.  HOL-λσ: an intentional first-order expression of higher-order logic , 2001, Mathematical Structures in Computer Science.

[5]  Mitsuhiro Okada,et al.  A uniform semantic proof for cut-elimination and completeness of various first and higher order logics , 2002, Theor. Comput. Sci..

[6]  Kurt Schutte Syntactical and Semantical Properties of Simple Type Theory , 1960 .

[7]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[8]  Peter B. Andrews Resolution in type theory , 1971, Journal of Symbolic Logic.

[9]  Gilles Dowek,et al.  Truth Values Algebras and Proof Normalization , 2006, TYPES.

[10]  Olivier Hermant,et al.  Semantic Cut Elimination in the Intuitionistic Sequent Calculus , 2005, TLCA.

[11]  Satoko Titani A Proof of the Cut-Elimination Theorem in Simple Type Theory , 1973, J. Symb. Log..

[12]  W. W. Tait,et al.  A nonconstructive proof of Gentzen’s Hauptsatz for second order predicate logic , 1966 .

[13]  James Lipton,et al.  A Constructive Semantic Approach to Cut Elimination in Type Theories with Axioms , 2008, CSL.

[14]  Alonzo Church,et al.  A formulation of the simple theory of types , 1940, Journal of Symbolic Logic.

[15]  James Lipton,et al.  Completeness and Cut-elimination in the Intuitionistic Theory of Types , 2005, J. Log. Comput..

[16]  Gilles Dowek,et al.  Proof normalization modulo , 1998, Journal of Symbolic Logic.

[17]  Mitsuhiro Okada Phase Semantic Cut-Elimination and Normalization Proofs of First- and Higher-Order Linear Logic , 1999, Theor. Comput. Sci..