Ostwald-ripening sintering kinetics of Pd-based three-way catalyst: Importance of initial particle size of Pd

[1]  H. Geng,et al.  Nanostructured copper/copper oxide hybrids: combined experimental and theoretical studies. , 2016, Physical chemistry chemical physics : PCCP.

[2]  S. Hong,et al.  Thermal stability of Pd-containing LaAlO3 perovskite as a modern TWC , 2015 .

[3]  J. Schwank,et al.  Aging, re-dispersion, and catalytic oxidation characteristics of model Pd/Al2O3 automotive three-way catalysts , 2015 .

[4]  Y. J. Kim,et al.  A combinatorial chemistry method for fast screening of perovskite-based NO oxidation catalyst. , 2014, ACS combinatorial science.

[5]  Sung Bong Kang,et al.  Effect of speciated HCs on the performance of modern commercial TWCs , 2014 .

[6]  S. Hong,et al.  Hydrothermal stability of CuSSZ13 for reducing NOx by NH3 , 2014 .

[7]  Sivakumar R. Challa,et al.  Sintering of catalytic nanoparticles: particle migration or Ostwald ripening? , 2013, Accounts of chemical research.

[8]  Sung Bong Kang,et al.  Effect of Aging Atmosphere on Thermal Sintering of Modern Commercial TWCs , 2013, Topics in Catalysis.

[9]  Sung Bong Kang,et al.  Activity function describing the effect of Pd loading on the catalytic performance of modern commercial TWC , 2012 .

[10]  A. Mohamad,et al.  Molecular dynamic and quantum chemical calculations for phthalazine derivatives as corrosion inhibitors of mild steel in 1M HCl , 2012 .

[11]  Sivakumar R. Challa,et al.  Relating rates of catalyst sintering to the disappearance of individual nanoparticles during Ostwald ripening. , 2011, Journal of the American Chemical Society.

[12]  S. Dahl,et al.  Ostwald ripening in a Pt/SiO2 model catalyst studied by in situ TEM , 2011 .

[13]  A. Datye,et al.  The Sintering of Supported Pd Automotive Catalysts , 2011 .

[14]  Sung Bong Kang,et al.  Activity Function for Describing Alteration of Three-Way Catalyst Performance over Palladium-Only Three-Way Catalysts by Catalyst Mileage , 2011 .

[15]  Ib Chorkendorff,et al.  Direct observations of oxygen-induced platinum nanoparticle ripening studied by in situ TEM. , 2010, Journal of the American Chemical Society.

[16]  Iljeong Heo,et al.  The alteration of the performance of field-aged Pd-based TWCs towards CO and C3H6 oxidation , 2009 .

[17]  D. Murzin,et al.  Describing the inverse dependence of hydrogen pressure by multi-site adsorption of the reactant: Hydrogenolysis of hydroxymatairesinol on a Pd/C catalyst , 2009 .

[18]  Richard A. Vaia,et al.  Accurate Simulation of Surfaces and Interfaces of Face-Centered Cubic Metals Using 12−6 and 9−6 Lennard-Jones Potentials , 2008 .

[19]  A. Datye,et al.  Model oxide supports for studies of catalyst sintering at elevated temperatures , 2007 .

[20]  Hyuk Jae Kwon,et al.  Effects of catalyst aging on the activity and selectivity of commercial three-way catalysts , 2007 .

[21]  S. C. Parker,et al.  Kinetic model for sintering of supported metal particles with improved size-dependent energetics and applications to Au on TiO 2 ( 110 ) , 2007 .

[22]  Dennis N. Assanis,et al.  Characterizing Light-Off Behavior and Species-Resolved Conversion Efficiencies During In-Situ Diesel Oxidation Catalyst Degreening , 2006 .

[23]  A. Datye,et al.  Particle Size Distributions in Heterogeneous Catalysts: What Do They Tell Us About the Sintering Mechanism? , 2006 .

[24]  Graeme Henkelman,et al.  Small Pd Clusters, up to the tetramer at least, are highly mobile on the MgO(100) surface. , 2005, Physical review letters.

[25]  Jianguo Wang,et al.  Pd/CeO2–TiO2 catalyst for CO oxidation at low temperature: a TPR study with H2 and CO as reducing agents , 2004 .

[26]  Charles Schenk,et al.  NOx Adsorber Aging on a Heavy-Duty On-Highway Diesel Engine - Part One , 2003 .

[27]  Paolo Fornasiero,et al.  Automotive catalytic converters: current status and some perspectives , 2003 .

[28]  S. C. Parker,et al.  The Effect of Size-Dependent Nanoparticle Energetics on Catalyst Sintering , 2002, Science.

[29]  C. H. Bartholomew Mechanisms of catalyst deactivation , 2001 .

[30]  A. Maroto-Valiente,et al.  Methane combustion over supported palladium catalysts: I. Reactivity and active phase , 2000 .

[31]  J. Kollár,et al.  The surface energy of metals , 1998 .

[32]  D. Goodman,et al.  CO + O2 and CO + NO Reactions over Pd/Al2O3 Catalysts , 1997 .

[33]  D. Goodman,et al.  The CO+NO Reaction over Pd: A Combined Study Using Single-Crystal, Planar-Model-Supported, and High-Surface-Area Pd/Al2O3Catalysts , 1997 .

[34]  Robert J. Farrauto,et al.  Thermal decomposition and reformation of PdO catalysts; support effects , 1995 .

[35]  B. Gates Supported Metal Clusters: Synthesis, Structure, and Catalysis , 1995 .

[36]  Lamber,et al.  Size dependence of the lattice parameter of small palladium particles. , 1995, Physical review. B, Condensed matter.

[37]  H. Skriver,et al.  Surface energy and work function of elemental metals. , 1992, Physical review. B, Condensed matter.

[38]  M. Boudart HETEROGENEOUS CATALYSIS BY METALS , 1985 .

[39]  Robert A. Buhrman,et al.  Size distributions for supported metal catalysts: Coalescence growth versus ostwald ripening , 1976 .

[40]  P. Flynn,et al.  A model of supported metal catalyst sintering: II. Application of model , 1974 .

[41]  M. Weins Structure and energy of grain boundaries , 1972 .

[42]  R. F. Hampson,et al.  The Vapor Pressure of Palladium , 1962 .

[43]  Sung Bong Kang,et al.  Universal activity function for predicting performance of Pd-based TWC as function of Pd loading and catalyst mileage , 2015 .

[44]  Grigorios C. Koltsakis,et al.  CATALYTIC AUTOMOTIVE EXHAUST AFTERTREATMENT , 1997 .

[45]  S. Ladas,et al.  The adsorption and catalytic oxidation of carbon monoxide on evaporated palladium particles , 1981 .

[46]  W. A. Miller,et al.  Surface free energies of solid metals: Estimation from liquid surface tension measurements , 1977 .

[47]  N. A. Gjostein,et al.  Supported metal crystallites , 1975 .

[48]  B. Chakraverty Grain size distribution in thin films—1. Conservative systems , 1967 .