A Patterned Graphene/ZnO UV Sensor Driven by Integrated Asymmetric Micro‐Supercapacitors on a Liquid Metal Patterned Foldable Paper

A foldable array of patterned graphene/ZnO nanoparticle UV sensor and asymmetric micro-supercapacitors (AMSCs) integrated on a paper substrate with patterned liquid metal interconnections is reported. The resistor type UV sensor based on graphene/ZnO nanoparticles is patterned to be driven by the stored energy of the integrated AMSCs. The AMSC consists of MnO2 nanoball deposited multiwalled carbon nanotubes (MWNTs) and V2O5 wrapped MWNTs as positive and negative electrodes, respectively. As an electrolyte, propylene carbonate-poly(methyl methacrylate)-LiClO4, an organic solvent-based gel, is used. The UV sensor and AMSCs can be easily integrated on a liquid metal, Galinstan, patterned, waterproof mineral paper and show a mechanically stable UV sensing, regardless of repetitive folding cycles. This work demonstrates a novel foldable nanomaterial based sensor system driven by integrated energy storage devices, applicable to future wearable and portable electronics.

[1]  Yihua Gao,et al.  Hierarchical nanostructures of polypyrrole@MnO2 composite electrodes for high performance solid-state asymmetric supercapacitors. , 2014, Nanoscale.

[2]  G. Bidan,et al.  3D hierarchical assembly of ultrathin MnO2 nanoflakes on silicon nanowires for high performance micro-supercapacitors in Li- doped ionic liquid , 2015, Scientific Reports.

[3]  Goangseup Zi,et al.  Stretchable Active Matrix Temperature Sensor Array of Polyaniline Nanofibers for Electronic Skin , 2016, Advanced materials.

[4]  Sangwoo Jin,et al.  Stretchable Array of Highly Sensitive Pressure Sensors Consisting of Polyaniline Nanofibers and Au-Coated Polydimethylsiloxane Micropillars. , 2015, ACS nano.

[5]  G. Haarberg,et al.  Oxidation of manganese(II) and reduction of manganese dioxide in sulphuric acid , 2000 .

[6]  Hui Peng,et al.  Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts , 2014 .

[7]  Liangti Qu,et al.  An all-cotton-derived, arbitrarily foldable, high-rate, electrochemical supercapacitor. , 2013, Physical chemistry chemical physics : PCCP.

[8]  Norio Shinya,et al.  Graphene and nanostructured MnO2 composite electrodes for supercapacitors , 2011 .

[9]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[10]  Justin C. Lytle,et al.  Multifunctional 3D nanoarchitectures for energy storage and conversion. , 2009, Chemical Society reviews.

[11]  G. Fang,et al.  Laser-induced colouration of V2O5 , 2000 .

[12]  L. Kong,et al.  Adjusting electrode initial potential to obtain high-performance asymmetric supercapacitor based on porous vanadium pentoxide nanotubes and activated carbon nanorods , 2015 .

[13]  Feijun Wang,et al.  Cellulose nanofiber–graphene all solid-state flexible supercapacitors , 2013 .

[14]  G. Cao,et al.  Hydrous Manganese Dioxide Nanowall Arrays Growth and Their Li+ Ions Intercalation Electrochemical Properties , 2008 .

[15]  Zhenxing Wang,et al.  A flexible UV nanosensor based on reduced graphene oxide decorated ZnO nanostructures. , 2012, Nanoscale.

[16]  D. Pech,et al.  Microsupercapacitors as miniaturized energy-storage components for on-chip electronics. , 2017, Nature nanotechnology.

[17]  Klaus Müllen,et al.  Graphene-based in-plane micro-supercapacitors with high power and energy densities , 2013, Nature Communications.

[18]  Chao Xie,et al.  Monolayer graphene film on ZnO nanorod array for high-performance Schottky junction ultraviolet photodetectors. , 2013, Small.

[19]  Minghao Yu,et al.  Advanced Ti‐Doped Fe2O3@PEDOT Core/Shell Anode for High‐Energy Asymmetric Supercapacitors , 2015 .

[20]  Jeong Sook Ha,et al.  Fabrication of a stretchable and patchable array of high performance micro-supercapacitors using a non-aqueous solvent based gel electrolyte , 2015 .

[21]  Yi Cui,et al.  Enhancing the supercapacitor performance of graphene/MnO2 nanostructured electrodes by conductive wrapping. , 2011, Nano letters.

[22]  Peihua Huang,et al.  Ultrahigh-power micrometre-sized supercapacitors based on onion-like carbon. , 2010, Nature nanotechnology.

[23]  Hui Xia,et al.  Nanostructured manganese oxide thin films as electrode material for supercapacitors , 2011 .

[24]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[25]  K. Suslick,et al.  Applications of Ultrasound to the Synthesis of Nanostructured Materials , 2010, Advanced materials.

[26]  Daeil Kim,et al.  All-solid-state flexible micro-supercapacitor arrays with patterned graphene/MWNT electrodes , 2014 .

[27]  J. Pereira‐Ramos,et al.  Doping effects on structure and electrode performance of K-birnessite-type manganese dioxides for rechargeable lithium battery , 2008 .

[28]  Y. Gogotsi,et al.  Foldable supercapacitors from triple networks of macroporous cellulose fibers, single-walled carbon nanotubes and polyaniline nanoribbons , 2015 .

[29]  Zhuang Li,et al.  Synthesis of nanowires, nanorods and nanoparticles of ZnO through modulating the ratio of water to methanol by using a mild and simple solution method , 2005 .

[30]  Chang-Jin Kim,et al.  Characterization of Nontoxic Liquid-Metal Alloy Galinstan for Applications in Microdevices , 2012, Journal of Microelectromechanical Systems.

[31]  Yiju Li,et al.  Fabrication of manganese dioxide nanoplates anchoring on biomass-derived cross-linked carbon nanosheets for high-performance asymmetric supercapacitors , 2015 .

[32]  Dagang Li,et al.  Flexible and foldable supercapacitor electrodes from the porous 3D network of cellulose nanofibers, carbon nanotubes and polyaniline , 2015 .

[33]  Y. Wang,et al.  Germanium recovery by co-precipitation of germanium and iron in conventional zinc metallurgy , 2008 .

[34]  Michiel Sprik,et al.  Alignment of electronic energy levels at electrochemical interfaces. , 2012, Physical chemistry chemical physics : PCCP.

[35]  Jonathan A. Fan,et al.  Experimental and Theoretical Studies of Serpentine Microstructures Bonded To Prestrained Elastomers for Stretchable Electronics , 2014 .

[36]  Hongliang Li,et al.  A high-performance asymmetric supercapacitor fabricated with graphene-based electrodes , 2011 .

[37]  Jonathan A. Fan,et al.  Stretchable batteries with self-similar serpentine interconnects and integrated wireless recharging systems , 2013, Nature Communications.

[38]  Zhenxing Wang,et al.  A High‐Energy‐Density Asymmetric Microsupercapacitor for Integrated Energy Systems , 2015 .

[39]  Pooi See Lee,et al.  High performance porous nickel cobalt oxide nanowires for asymmetric supercapacitor , 2014 .

[40]  J. Angus,et al.  Electrochemical pinning of the Fermi level: mediation of photoluminescence from gallium nitride and zinc oxide. , 2008, Journal of the American Chemical Society.

[41]  Feng Yan,et al.  A highly sensitive ultraviolet sensor based on a facile in situ solution-grown ZnO nanorod/graphene heterostructure. , 2011, Nanoscale.

[42]  Xuan Wu,et al.  Selectively plated stretchable liquid metal wires for transparent electronics , 2015 .

[43]  Afriyanti Sumboja,et al.  Flexible and Highly Scalable V2O5‐rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices , 2014 .

[44]  B. Jang,et al.  Graphene-based supercapacitor with an ultrahigh energy density. , 2010, Nano letters.

[45]  J. Santhanalakshmi,et al.  Au–ZnO bullet-like heterodimer nanoparticles: synthesis and use for enhanced nonenzymatic electrochemical determination of glucose , 2014 .

[46]  Sebastian Wille,et al.  Rapid Fabrication Technique for Interpenetrated ZnO Nanotetrapod Networks for Fast UV Sensors , 2014, Advanced materials.

[47]  Gordon G Wallace,et al.  Ultrafast charge and discharge biscrolled yarn supercapacitors for textiles and microdevices , 2013, Nature Communications.

[48]  S. K. Pradhan,et al.  Micro-Raman and XPS studies of pure ZnO ceramics , 2010 .

[49]  Goangseup Zi,et al.  Biaxially stretchable, integrated array of high performance microsupercapacitors. , 2014, ACS nano.

[50]  B. Dunn,et al.  High‐Performance Supercapacitors Based on Intertwined CNT/V2O5 Nanowire Nanocomposites , 2011, Advanced materials.

[51]  Myung Sik Shin,et al.  Surfactant Effects on the Morphology and Pseudocapacitive Behavior of V2 O5 ⋅H2 O. , 2015, ChemSusChem.

[52]  Wen Chen,et al.  Interpenetrating network V2O5 nanosheets/carbon nanotubes nanocomposite for fast lithium storage , 2014 .

[53]  Genevieve Dion,et al.  Textile energy storage in perspective , 2014 .

[54]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[55]  Yong Zhao,et al.  MnO2 nanosheets grown on the ZnO-nanorod-modified carbon fibers for supercapacitor electrode materials , 2014 .

[56]  Hao Jiang,et al.  Mesoporous Carbon Incorporated Metal Oxide Nanomaterials as Supercapacitor Electrodes , 2012, Advanced materials.

[57]  B. Dunn,et al.  Pseudocapacitive oxide materials for high-rate electrochemical energy storage , 2014 .

[58]  A. Chandra,et al.  Supplementary Information Significant Performance Enhancement in Asymmetric Supercapacitors Based on Metal Oxides, Carbon Nanotubes and Neutral Aqueous Electrolyte , 2022 .

[59]  Goangseup Zi,et al.  Stretchable patterned graphene gas sensor driven by integrated micro-supercapacitor array , 2016 .

[60]  Hongxing Xu,et al.  Aqueous‐Processable Noncovalent Chemically Converted Graphene–Quantum Dot Composites for Flexible and Transparent Optoelectronic Films , 2010, Advanced materials.

[61]  Di Chen,et al.  Flexible all-solid-state asymmetric supercapacitors with three-dimensional CoSe2/carbon cloth electrodes , 2015 .

[62]  Meihua Jin,et al.  High Pseudocapacitance from Ultrathin V2O5 Films Electrodeposited on Self‐Standing Carbon‐Nanofiber Paper , 2011 .

[63]  Jing Xu,et al.  Flexible electronics based on inorganic nanowires. , 2015, Chemical Society reviews.

[64]  J. Chae,et al.  1.9V aqueous carbon–carbon supercapacitors with unequal electrode capacitances , 2012 .

[65]  Lili Zhang,et al.  Carbon-based materials as supercapacitor electrodes. , 2009, Chemical Society reviews.

[66]  F. Xia,et al.  Ultrafast graphene photodetector , 2009, CLEO/QELS: 2010 Laser Science to Photonic Applications.

[67]  Jeffrey W. Long,et al.  To Be or Not To Be Pseudocapacitive , 2015 .

[68]  S. Bedair,et al.  Multilayer liquid metal stretchable inductors , 2014 .

[69]  Riichiro Saito,et al.  Characterizing carbon nanotube samples with resonance Raman scattering , 2003 .

[70]  M. Beidaghi,et al.  Micro‐Supercapacitors Based on Interdigital Electrodes of Reduced Graphene Oxide and Carbon Nanotube Composites with Ultrahigh Power Handling Performance , 2012 .

[71]  Ke Wang,et al.  High performance of stretchable carbon nanotube–polypyrrole fiber supercapacitors under dynamic deformation and temperature variation , 2016 .

[72]  L. Gu,et al.  Three-dimensional graphene nanosheet encrusted carbon micropillar arrays for electrochemical sensing. , 2012, Nanoscale.

[73]  D. Aurbach,et al.  Electrochemical and spectroscopic analysis of Mg2+ intercalation into thin film electrodes of layered oxides: V2O5 and MoO3. , 2013, Langmuir : the ACS journal of surfaces and colloids.

[74]  Jin Zhai,et al.  Super-hydrophobic surfaces: From natural to artificial , 2002 .

[75]  Benjamin C. K. Tee,et al.  Skin-like pressure and strain sensors based on transparent elastic films of carbon nanotubes. , 2011, Nature nanotechnology.