Latent variable modeling in the hierarchical modeling framework in longitudinal studies: a fully bayesian approach

This paper presents a strategy for specifying latent variable regressions in the hierarchical modeling framework (LVR-HM). This model takes advantage of the Structural Equation Modeling (SEM) approach in terms of modeling flexibility—regression among latent variables—and of the HM approach in terms of allowing for more general data structures. A fully Bayesian approach via Markov Chain Monte Carlo (MCMC) techniques is applied to the LVR-HM. Through analyzing the data from a longitudinal study of educational achievement, gender difference are explored in the growth of mathematical achievement across grade 7 through grade 10. Allowing for the fact that initial status effect to rates of change may differ for girls and boys, the LVR-HM is specified in a way that rates of change parameters are modeled as a function of initial status parameters and the interaction between initial status and gender.

[1]  The Taagepera-Ray Generalized Index of Concentration , 1979 .

[2]  Nelson Lim,et al.  Sensitivity Analysis for Hierarchical Models Employing t Level-1 Assumptions , 2002 .

[3]  D. S. Sivia,et al.  Data Analysis , 1996, Encyclopedia of Evolutionary Psychological Science.

[4]  Nancy L. Allen,et al.  Thin Versus Thick Matching in the Mantel-Haenszel Procedure for Detecting DIF , 1993 .

[5]  David Draper,et al.  Inference and Hierarchical Modeling in the Social Sciences , 1995 .

[6]  David B. Dunson,et al.  Bayesian Data Analysis , 2010 .

[7]  Anthony S. Bryk,et al.  Application of Hierarchical Linear Models to Assessing Change , 1987 .

[8]  Bradley P. Carlin,et al.  BAYES AND EMPIRICAL BAYES METHODS FOR DATA ANALYSIS , 1996, Stat. Comput..

[9]  Adrian F. M. Smith,et al.  Sampling-Based Approaches to Calculating Marginal Densities , 1990 .

[10]  R. Jennrich,et al.  Unbalanced repeated-measures models with structured covariance matrices. , 1986, Biometrics.

[11]  Bengt Muthén,et al.  LONGITUDINAL STUDIES OF ACHIEVEMENT GROWTH USING LATENT VARIABLE MODELING , 1998 .

[12]  G. C. Tiao,et al.  Bayesian inference in statistical analysis , 1973 .

[13]  M. Seltzer,et al.  Sensitivity Analysis for Fixed Effects in the Hierarchical Model: A Gibbs Sampling Approach , 1993 .

[14]  S. Raudenbush,et al.  Assessing Direct and Indirect Effects in Multilevel Designs with Latent Variables , 1999 .

[15]  D. Rubin Estimation in Parallel Randomized Experiments , 1981 .

[16]  John B. Willett,et al.  Using covariance structure analysis to detect correlates and predictors of individual change over time , 1994 .

[17]  A. Bryk,et al.  Early vocabulary growth: Relation to language input and gender. , 1991 .

[18]  Bengt Muthén,et al.  General Longitudinal Modeling of Individual Differences in Experimental Designs: A Latent Variable Framework for Analysis and Power Estimation , 1997 .

[19]  A. Raftery,et al.  How Many Iterations in the Gibbs Sampler , 1991 .

[20]  Wing Hung Wong,et al.  Bayesian Analysis in Applications of Hierarchical Models: Issues and Methods , 1996 .

[21]  Sylvia Richardson,et al.  Markov Chain Monte Carlo in Practice , 1997 .