Is the fast Hankel transform faster than quadrature
暂无分享,去创建一个
[1] G. W. Hohmann,et al. 4. Electromagnetic Theory for Geophysical Applications , 1987 .
[2] Alan D. Chave,et al. Numerical integration of related Hankel transforms by quadrature and continued fraction expansion , 1983 .
[3] Howard A. Stone,et al. Evaluating innite integrals involving Bessel functions of arbitrary order , 1995 .
[4] T. Patterson,et al. The optimum addition of points to quadrature formulae. , 1968 .
[5] I. M. Longman,et al. Note on a method for computing infinite integrals of oscillatory functions , 1956, Mathematical Proceedings of the Cambridge Philosophical Society.
[6] Ernst Joachim Weniger,et al. Nonlinear sequence transformations for the acceleration of convergence and the summation of divergent series , 1989 .
[7] D. Shanks. Non‐linear Transformations of Divergent and Slowly Convergent Sequences , 1955 .
[8] Krzysztof A. Michalski,et al. Extrapolation methods for Sommerfeld integral tails , 1998 .
[9] L. Trefethen. Spectral Methods in MATLAB , 2000 .
[10] G. Newman,et al. Frequency‐domain modelling of airborne electromagnetic responses using staggered finite differences , 1995 .
[11] Y. Rubin,et al. A Bayesian model for gas saturation estimation using marine seismic AVA and CSEM data , 2007 .
[12] Walter L. Anderson,et al. Computer program; numerical integration of related Hankel transforms of orders O and 1 by adaptive digital filtering , 1979 .
[13] Gregory A. Newman,et al. Transient electromagnetic response of a three-dimensional body in a layered earth , 1986 .
[14] Kerry Key,et al. 1D inversion of multicomponent, multifrequency marine CSEM data: Methodology and synthetic studies for resolving thin resistive layers , 2009 .
[15] Kerry Key,et al. 2D marine controlled-source electromagnetic modeling: Part 1 — An adaptive finite-element algorithm , 2007 .
[16] Walter L. Anderson,et al. A hybrid fast Hankel transform algorithm for electromagnetic modeling , 1989 .
[17] P. Wynn,et al. On a Device for Computing the e m (S n ) Transformation , 1956 .
[18] D. Guptasarma,et al. New digital linear filters for Hankel J0 and J1 transforms , 1997 .
[19] D. Ghosh. THE APPLICATION OF LINEAR FILTER THEORY TO THE ' DIRECT INTERPRETATION OF GEOELECTRICAL RESISTIVITY SOUNDING MEASUREMENTS * , 1971 .
[20] G. V. Haines,et al. Logarithmic Fourier transformation , 1988 .
[21] Richard W. Hamming,et al. Numerical Methods for Scientists and Engineers , 1962 .
[22] S. Constable. Ten years of marine CSEM for hydrocarbon exploration , 2010 .
[23] Walter L. Anderson,et al. Algorithm 588: Fast Hankel Transforms Using Related and Lagged Convolutions , 1982, TOMS.
[24] Fan-Nian Kong,et al. Hankel transform filters for dipole antenna radiation in a conductive medium , 2007 .
[25] K. Sørensen,et al. The fields from a finite electrical dipole—A new computational approach , 1994 .
[26] H. Johansen,et al. FAST HANKEL TRANSFORMS , 1979 .
[27] A. Raiche. A flow‐through Hankel transform technique for rapid, accurate Green's function computation , 1999 .
[28] P. Hänggi,et al. Continued Fraction Expansions in Scattering Theory and Statistical Non-Equilibrium Mechanics , 1978 .