Microstructure Refinement in W-Y2O3 Alloy Fabricated by Wet Chemical Method with Surfactant Addition and Subsequent Spark Plasma Sintering

[1]  J. Vimala,et al.  Synthesis of high purity tungsten nanoparticles from tungsten heavy alloy scrap by selective precipitation and reduction route , 2016 .

[2]  Z. Hens,et al.  From ligands to binding motifs and beyond; the enhanced versatility of nanocrystal surfaces. , 2016, Dalton transactions.

[3]  C. S. Liu,et al.  Characterization of ODS-tungsten microwave-sintered from sol-gel prepared nano-powders , 2014 .

[4]  M. Muhammed,et al.  Processing and sintering of yttrium-doped tungsten oxide nanopowders to tungsten-based composites , 2014, Journal of Materials Science.

[5]  Haijun Zhang,et al.  Low temperature preparation of tungsten nanoparticles from molten salt , 2014 .

[6]  E. Ma,et al.  Nanostructured high-strength molybdenum alloys with unprecedented tensile ductility. , 2013, Nature materials.

[7]  M. Muhammed,et al.  Fabrication of nanostructured W–Y2O3 materials by chemical methods , 2012 .

[8]  M. Muhammed,et al.  Spark plasma sintering of tungsten-yttrium oxide composites from chemically synthesized nanopowders and microstructural characterization , 2011 .

[9]  M. Muhammed,et al.  Chemically produced nanostructured ODS–lanthanum oxide–tungsten composites sintered by spark plasma , 2011 .

[10]  V. Philipps,et al.  Tokamak plasma response to droplet spraying from melted plasma-facing components , 2011 .

[11]  Mark F. Horstemeyer,et al.  Investigation on Sintering Mechanism of Nanoscale Tungsten Powder Based on Atomistic Simulation , 2010 .

[12]  Cao Xu Interactions between Anionic Surfactants and Cations , 2010 .

[13]  Long-Qing Chen,et al.  Effect of second-phase particle morphology on grain growth kinetics , 2009 .

[14]  S. Hong,et al.  Fabrication of high temperature oxides dispersion strengthened tungsten composites by spark plasma sintering process , 2009 .

[15]  N. Baluc,et al.  Sintering and characterization of W–Y and W–Y2O3 materials , 2009 .

[16]  Akira Hasegawa,et al.  Development of ultra-fine grained W–(0.25–0.8)wt%TiC and its superior resistance to neutron and 3 MeV He-ion irradiations , 2008 .

[17]  Satyen K. Deb,et al.  Opportunities and challenges in science and technology of WO3 for electrochromic and related applications , 2008 .

[18]  Hiroaki Kurishita,et al.  Development of ultra-fine grained W–TiC and their mechanical properties for fusion applications , 2007 .

[19]  T. Ihli,et al.  Development of a helium-cooled divertor: Material choice and technological studies , 2007 .

[20]  A. Voevodin,et al.  Nanocomposite and nanostructured tribological materials for space applications , 2005 .

[21]  B. Ding,et al.  Nanostructured W–La2O3 electrode materials with high content La2O3 doping , 2005 .

[22]  E. Diegele,et al.  Development of a helium-cooled divertor concept: design-related requirements on materials and fabrication technology , 2004 .

[23]  徐静,et al.  Formation mechanism of intragranular structure in nano-composites , 2004 .

[24]  K. F. Russell,et al.  Improvement in the ductility of molybdenum alloys due to grain boundary segregation , 2002 .

[25]  R. Buckman,et al.  Evaluation of oxide dispersion strengthened (ODS) molybdenum and molybdenum–rhenium alloys , 1999 .

[26]  G. Vieider,et al.  Development of tungsten armor and bonding to copper for plasma-interactive components , 1998 .

[27]  J. Schlosser,et al.  Lifetime of Be-, CFC- and W-armoured ITER divertor plates , 1996 .