Ranking of Graphs

A vertex (edge) coloring c∶V → {1, 2, ⋯, t} (c′∶E → {1, 2, ⋯, t}) of a graph G=(V, E) is a vertex (edge) t-ranking if for any two vertices (edges) of the same color every path between them contains a vertex (edge) of larger color. The vertex ranking number χ r (G) (edge ranking number\(\chi '_r \left( G \right)\)) is the smallest value of t such that G has a vertex (edge) t-ranking. In this paper we study the algorithmic complexity of the VERTEX RANKING and EDGE RANKING problems. Among others it is shown that χ r (G) can be computed in polynomial time when restricted to graphs with treewidth at most k for any fixed k. We characterize those graphs where the vertex ranking number χ r and the chromatic number χ coincide on all induced subgraphs, show that χ r (G)=χ(G) implies χ(G)=ω(G) (largest clique size) and give a formula for \(\chi '_r \left( {K_n } \right)\).

[1]  J. A. Bondy,et al.  Graph Theory with Applications , 1978 .

[2]  Paul D. Seymour,et al.  Graph minors. VI. Disjoint paths across a disc , 1986, J. Comb. Theory, Ser. B.

[3]  Hans L. Bodlaender,et al.  A Tourist Guide through Treewidth , 1993, Acta Cybern..

[4]  Alejandro A. Schäffer,et al.  Optimal Node Ranking of Trees in Linear Time , 1989, Inf. Process. Lett..

[5]  Alejandro A. Schäffer,et al.  Optimal edge ranking of trees in polynomial time , 1993, SODA '93.

[6]  Paul D. Seymour,et al.  Graph minors. IV. Tree-width and well-quasi-ordering , 1990, J. Comb. Theory, Ser. B.

[7]  M. Golumbic Algorithmic graph theory and perfect graphs , 1980 .

[8]  Neil Robertson,et al.  Graph Minors .XIII. The Disjoint Paths Problem , 1995, J. Comb. Theory B.

[9]  Charles E. Leiserson,et al.  Area-Efficient Graph Layouts (for VLSI) , 1980, FOCS.

[10]  Suzanne M. Seager,et al.  Ordered colourings , 1995, Discret. Math..

[11]  Jitender S. Deogun,et al.  On Vertex Ranking for Permutations and Other Graphs , 1994, STACS.

[12]  Arunabha Sen,et al.  On a Graph Partition Problem with Application to VLSI Layout , 1992, Inf. Process. Lett..

[13]  John R. Gilbert,et al.  Approximating Treewidth, Pathwidth, and Minimum Elimination Tree Height , 1991, WG.

[14]  Joseph W. H. Liu The role of elimination trees in sparse factorization , 1990 .

[15]  Hans L. Bodlaender,et al.  A linear time algorithm for finding tree-decompositions of small treewidth , 1993, STOC.

[16]  H. D. Ratliff,et al.  Optimal Node Ranking of Trees , 1988, Inf. Process. Lett..

[17]  A. Brandstädt,et al.  Graph Classes: A Survey , 1987 .

[18]  John K. Reid,et al.  The Multifrontal Solution of Indefinite Sparse Symmetric Linear , 1983, TOMS.

[19]  Paul D. Seymour,et al.  Graph minors. V. Excluding a planar graph , 1986, J. Comb. Theory B.

[20]  Charles E. Leiserson,et al.  Area-efficient graph layouts , 1980, 21st Annual Symposium on Foundations of Computer Science (sfcs 1980).

[21]  Ananth V. Iyer,et al.  On an edge ranking problem of trees and graphs , 1991, Discret. Appl. Math..

[22]  E. S. Wolk The comparability graph of a tree , 1962 .

[23]  David S. Johnson,et al.  Computers and Intractability: A Guide to the Theory of NP-Completeness , 1978 .