Evidence for regional Dauphiné twinning in quartz from the Santa Rosa mylonite zone in Southern California. A neutron diffraction study

Preferred orientation in granitic mylonites from the Santa Rosa mylonite zone in Southern California is investigated with time-of-flight neutron diffraction. Quartz and biotite display strong preferred orientation, whereas, feldspar alignment is weak. For quartz, a c-axis maximum in the intermediate fabric direction is consistent with dynamic recrystallization. Pole figures for positive and negative rhombs, such as rZ{10 11} and zZ{01 11}, are distinct over a wide region, suggesting that the pattern reflects tectonic deformation and was not

[1]  G. Will,et al.  Crystal structures of quartz and magnesium germanate by profile analysis of synchrotron-radiation high-resolution powder data , 1988 .

[2]  H. Wenk DEFORMATION OF MYLONITES IN PALM CANYON, CALIFORNIA, BASED ON XENOLITH GEOMETRY , 1998 .

[3]  D. Prior,et al.  Grain boundary hierarchy development in a quartz mylonite , 1998 .

[4]  T. Hahn,et al.  Crystal structures of the low-temperature quartz-type phases of SiO2 and GeO2 at elevated pressure , 1992 .

[5]  H. Wenk 2 – Measurement of Pole Figures , 1985 .

[6]  H. Wenk,et al.  Preferred orientation of phyllosilicates in phyllonites and ultramylonites , 1987 .

[7]  J. Pannetier,et al.  Texture development in deformed granodiorites from the Santa Rosa mylonite zone, southern California , 1990 .

[8]  H. Wenk,et al.  Development of preferred orientation and microstructure in sheared quartzite: comparison of natural data and simulated results , 1999 .

[9]  John Starkey,et al.  An illustration of the advantages of a complete texture analysis described by the orientation distribution function (ODF) using quartz pole figure data , 1981 .

[10]  H. Wenk,et al.  Evidence for Late Cretaceous crustal thinning in the Santa Rosa mylonite zone, southern California , 1985 .

[11]  S. Matthies,et al.  On the Reproduction of the Orientation Distribution Function of Texturized Samples from Reduced Pole Figures Using the Conception of a Conditional Ghost Correction , 1982 .

[12]  M. Brigatti,et al.  Crystal-structure refinements of 1M plutonic biotites , 1990 .

[13]  Ricardo A. Lebensohn,et al.  A model for texture development dominated by deformation twinning: Application to zirconium alloys , 1991 .

[14]  H. Wenk,et al.  Dauphiné twinning as evidence for an impact origin of preferred orientation in quartzite: An example from Vredefort, South Africa , 2005 .

[15]  Y. Bréchet,et al.  A deformation-based model for recrystallization of anisotropic materials , 1997 .

[16]  H. Wenk,et al.  Preferred Orientation in a Low-Symmetry Quartz Mylonite , 1972, The Journal of Geology.

[17]  A. Schubnikow,et al.  Über die Schlag- und Druckfiguren und über die mechanischen Quarzzwillinge , 1932 .

[18]  H. Wenk,et al.  BEARTEX: a Windows-based program system for quantitative texture analysis , 1998 .

[19]  H. C. Heard,et al.  Mineral and rock deformation : laboratory studies : the Paterson volume , 1986 .

[20]  J. Kendall,et al.  Petrofabric-derived seismic properties of a mylonitic quartz simple shear zone: implications for seismic reflection profiling , 2005, Geological Society, London, Special Publications.

[21]  D. Prior,et al.  The use of combined cathodoluminescence and EBSD analysis: a case study investigating grain boundary migration mechanisms in quartz , 2005, Journal of microscopy.

[22]  R. Young,et al.  The Rietveld method , 2006 .

[23]  J. Tullis Quartz: Preferred Orientation in Rocks Produced by Dauphin� Twinning , 1970, Science.

[24]  G. Lloyd Microstructural evolution in a mylonitic quartz simple shear zone: the significant roles of dauphine twinning and misorientation , 2004, Geological Society, London, Special Publications.

[25]  R. Groshong,et al.  Precision and accuracy of the calcite strain-gage technique , 1984 .

[26]  H. Wenk,et al.  Quantitative texture analysis with the HIPPO neutron TOF diffractometer , 2005 .

[27]  Armel Le Bail,et al.  Ab-initio structure determination of LiSbWO6 by X-ray powder diffraction , 1988 .

[28]  J. Parise,et al.  Average structure of an An 48 plagioclase from the Hogarth Ranges , 1986 .

[29]  D. J. Barber,et al.  Dauphiné twinning in deformed quartzites: Implications of an in situ TEM study of the α-β phase transformation , 1991 .

[30]  B. Sander Einführung in die Gefügekunde der geologischen Körper , 1948 .

[31]  D. Prior,et al.  From geometry to dynamics of microstructure: using boundary lengths to quantify boundary misorientations and anisotropy , 2003 .

[32]  G. Lloyd Grain boundary contact effects during faulting of quartzite: an SEM/EBSD analysis , 2000 .

[33]  S. Matthies 20 Years WIMV, History, Experience and Contemporary Developments , 2002 .

[34]  L. Johnson,et al.  Pseudotachylites in the Eastern Peninsular Ranges of California , 2000 .

[35]  T. Tullis The use of mechanical twinning in minerals as a measure of shear stress magnitudes , 1980 .

[36]  H. Wenk,et al.  Development of phyllonite from granodiorite: Mechanisms of grain-size reduction in the Santa Rosa mylonite zone, California , 1995 .

[37]  Hans-Rudolf Wenk,et al.  Texture analysis of a recrystallized quartzite using electron diffraction in the scanning electron microscope , 2000 .

[38]  E. Rutter,et al.  Palaeostress estimation using calcite twinning: experimental calibration and application to nature , 1990 .

[39]  W. Wooster,et al.  Control of Electrical Twinning in Quartz , 1946, Nature.

[40]  D. Baker,et al.  Dauphiné Twinning in Quartzite Mylonite , 1977, The Journal of Geology.

[41]  H. Wenk,et al.  MAUD: a friendly Java program for material analysis using diffraction , 1999 .

[42]  H. Wenk,et al.  Texture analysis with the new HIPPO TOF diffractometer , 2003 .

[43]  R. N. Thurston,et al.  Elastic Moduli of Quartz versus Hydrostatic Pressure at 25 and-195.8C , 1965 .

[44]  L. A. Thomas,et al.  Piezoerescence—the growth of Dauphiné twinning in quartz under stress , 1951, Proceedings of the Royal Society of London. Series A. Mathematical and Physical Sciences.