MEMS actuators for biomedical applications: a review

[1]  E. Makino,et al.  Fabrication of TiNi shape memory micropump , 2001 .

[2]  K. Takahata,et al.  Side‐Viewing Endoscopic Raman Spectroscopy for Angle‐Resolved Analysis of Luminal Organs , 2019, Advanced Materials Technologies.

[3]  Shuichi Wakimoto,et al.  Miniature soft hand with curling rubber pneumatic actuators , 2009, 2009 IEEE International Conference on Robotics and Automation.

[4]  D. Dewi,et al.  A multi-segmented shape memory alloy-based actuator system for endoscopic applications , 2019, Sensors and Actuators A: Physical.

[5]  Israel Desta,et al.  Synergistic action of thermoresponsive and hygroresponsive elements elicits rapid and directional response of a bilayer actuator. , 2016, Chemical communications.

[6]  J R Coppeta,et al.  A portable and reconfigurable multi-organ platform for drug development with onboard microfluidic flow control. , 2016, Lab on a chip.

[7]  A. M. Faudzi,et al.  Development of bending soft actuator with different braided angles , 2012, 2012 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (AIM).

[8]  Wojciech Zareba,et al.  Multicenter Automatic Defibrillator Implantation Trial-Subcutaneous Implantable Cardioverter Defibrillator (MADIT S-ICD): Design and clinical protocol. , 2017, American heart journal.

[9]  K. Takahata,et al.  Frequency-selectable wireless actuation of hydrogel using micromachined resonant heaters toward implantable drug delivery applications , 2009, TRANSDUCERS 2009 - 2009 International Solid-State Sensors, Actuators and Microsystems Conference.

[10]  Ali Khademhosseini,et al.  Advances in engineering hydrogels , 2017, Science.

[11]  Deepak Uttamchandani Wireless MEMS Networks and Applications , 2016 .

[12]  J. Kasperczyk,et al.  Double layer paclitaxel delivery systems based on bioresorbable terpolymer with shape memory properties. , 2014, International journal of pharmaceutics.

[13]  Kenichi Takahata,et al.  Implantable drug delivery device using frequency-controlled wireless hydrogel microvalves , 2011, Biomedical microdevices.

[14]  A. Lendlein,et al.  Reprogrammable recovery and actuation behaviour of shape-memory polymers , 2019, Nature Reviews Materials.

[15]  H. K. Ma,et al.  Development of a piezoelectric micropump with novel separable design for medical applications , 2015 .

[16]  O. Jeong,et al.  Fabrication and test of a micro electromagnetic actuator , 2005 .

[17]  J. Lai,et al.  Polysaccharide and polypeptide based injectable thermo-sensitive hydrogels for local biomedical applications. , 2019, International journal of biological macromolecules.

[18]  Alaa AbuZaiter,et al.  Design and fabrication of a novel XYθz monolithic micro-positioning stage driven by NiTi shape-memory-alloy actuators , 2016 .

[19]  Chongdu Cho,et al.  The Investigation of a Shape Memory Alloy Micro-Damper for MEMS Applications , 2007, Sensors.

[20]  D. Maitland,et al.  Shape‐memory behavior of thermally stimulated polyurethane for medical applications , 2007 .

[21]  Kenichi Takahata,et al.  Wireless Hyperthermia Stent System for Restenosis Treatment and Testing With Swine Model , 2020, IEEE Transactions on Biomedical Engineering.

[22]  Alireza Nojeh,et al.  High‐power MEMS switch enabled by carbon‐nanotube contact and shape‐memory‐alloy actuator , 2013 .

[23]  Shuichi Miyazaki,et al.  Miniaturized shape memory alloy pumps for stepping microfluidic transport , 2012 .

[24]  D. Rus,et al.  Design, fabrication and control of soft robots , 2015, Nature.

[25]  Kenichi Takahata,et al.  Wireless implantable chip with integrated nitinol-based pump for radio-controlled local drug delivery. , 2015, Lab on a chip.

[26]  Christoph Huber,et al.  The first batteryless, solar-powered cardiac pacemaker. , 2015, Heart rhythm.

[27]  M. Kurosawa,et al.  A micro ultrasonic scalpel with modified stepped horn , 2012 .

[28]  Tom Duerig,et al.  Self-expanding nitinol stents: material and design considerations , 2004, European Radiology.

[29]  Ronald S. Fearing,et al.  6 – Micro-Actuators for Micro-Robots: Electric and Magnetic* , 1998 .

[30]  M. Esashi,et al.  Two-dimensional MEMS Fe-based metallic glass micromirror driven by an electromagnetic actuator , 2019, Japanese Journal of Applied Physics.

[31]  A. Lansky,et al.  Novel Nitinol Stent for Lesions up to 24 cm in the Superficial Femoral and Proximal Popliteal Arteries: 24-Month Results From the TIGRIS Randomized Trial , 2018, Journal of endovascular therapy : an official journal of the International Society of Endovascular Specialists.

[32]  D. Kaur,et al.  Shape memory alloy thin films and heterostructures for MEMS applications: A review , 2016 .

[33]  Huikai Xie,et al.  3D in vivo optical coherence tomography based on a low-voltage, large-scan-range 2D MEMS mirror. , 2010, Optics express.

[34]  Jianbin Luo,et al.  Structure and electrical properties of PMN-PZT micro-actuator deposited by tape-casting process , 2005 .

[35]  Duncan J. Maitland,et al.  Porous shape memory polymers: Design and applications , 2016 .

[36]  Kaspar Althoefer,et al.  Highly dexterous 2‐module soft robot for intra‐organ navigation in minimally invasive surgery , 2018, The international journal of medical robotics + computer assisted surgery : MRCAS.

[37]  Georgia-Paraskevi Nikoleli,et al.  Biosensors Based on Microfluidic Devices Lab-on-a-Chip and Microfluidic Technology , 2018 .

[38]  Dominiek Reynaerts,et al.  Pneumatic and hydraulic microactuators: a review , 2010 .

[39]  Gary Rosengarten,et al.  Analysis of a novel micro-hydraulic actuation for MEMS , 2004 .

[40]  Benjamin Gorissen,et al.  Flexible pneumatic twisting actuators and their application to tilting micromirrors , 2014 .

[41]  Howon Lee,et al.  Soft Robotic Manipulation and Locomotion with a 3D Printed Electroactive Hydrogel. , 2018, ACS applied materials & interfaces.

[42]  Steven A. Soper,et al.  Bio-MEMS : Technologies and Applications , 2006 .

[43]  Micky Rakotondrabe,et al.  Inversion-free feedforward dynamic compensation of hysteresis nonlinearities in piezoelectric micro/nano-positioning actuators , 2015, 2015 IEEE International Conference on Robotics and Automation (ICRA).

[44]  Koichi Suzumori,et al.  Elastic materials producing compliant robots , 1996, Robotics Auton. Syst..

[45]  Shoichi Iikura,et al.  Development of flexible microactuator and its applications to robotic mechanisms , 1991, Proceedings. 1991 IEEE International Conference on Robotics and Automation.

[46]  S. Konishi,et al.  An openable artificial intestinal tract system for the in vitro evaluation of medicines , 2015, Microsystems & Nanoengineering.

[47]  I-Kao Chiang,et al.  On-chip manipulation of single microparticles, cells, and organisms using surface acoustic waves , 2012, Proceedings of the National Academy of Sciences.

[48]  Shivam Chopra,et al.  Piezoelectric actuators with on-board sensing for micro-robotic applications , 2019, Smart Materials and Structures.

[49]  M. Tahmasebipour,et al.  Unidirectional and bidirectional valveless electromagnetic micropump with PDMS-Fe3O4 nanocomposite magnetic membrane , 2019, Journal of Micromechanics and Microengineering.

[50]  H. Kaji,et al.  Drug delivery devices for retinal diseases☆ , 2017, Advanced drug delivery reviews.

[51]  Robert Lewis Reuben,et al.  Micro-tweezers: design, fabrication, simulation and testing of a pneumatically actuated micro-gripper for micromanipulation and microtactile sensing , 2015 .

[52]  Julio Muñoz García,et al.  Active Annuloplasty System for Mitral Valve Insufficiency , 2008, BIOSTEC.

[53]  S. S. Mani Prabu,et al.  Investigations on performance viability of NiTi, NiTiCu, CuAlNi and CuAlNiMn shape memory alloy/Kapton composite thin film for actuator application , 2019, Composites Part B: Engineering.

[54]  H. Kato,et al.  Transformation-induced plasticity as the origin of serrated flow in an NiTi shape memory alloy , 2013 .

[55]  Shekhar Bhansali,et al.  MEMS for biomedical applications , 2012 .

[56]  Robert Langer,et al.  A BioMEMS review: MEMS technology for physiologically integrated devices , 2004, Proceedings of the IEEE.

[57]  Xu Mao,et al.  A novel MEMS electromagnetic actuator with large displacement , 2015 .

[58]  Masoud Soleimani,et al.  Polyurethane/polycaprolactane blend with shape memory effect as a proposed material for cardiovascular implants. , 2009, Acta biomaterialia.

[59]  Robert Puers,et al.  Actuators: Accomplishments, opportunities and challenges , 2019, Sensors and Actuators A: Physical.

[60]  B. Nair,et al.  Automated and programmable electromagnetically actuated valves for microfluidic applications , 2018, Sensors and Actuators A: Physical.

[61]  Xiongbiao Chen,et al.  A Survey of Modeling and Control of Piezoelectric Actuators , 2013 .

[62]  K. Takahata,et al.  High-Speed and Stepping MEMS Rotary Actuator for Multimodal, 360° Side-Viewing Endoscopic Probes , 2020, 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS).

[63]  Michael F. Ashby,et al.  The selection of mechanical actuators based on performance indices , 1997, Proceedings of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[64]  Ahmad Athif Mohd Faudzi,et al.  Thermomechanical behavior of bulk NiTi shape-memory-alloy microactuators based on bimorph actuation , 2016 .

[65]  F. Perdigones,et al.  Single-use impulsion system for displacement of liquids on thermoplastic-based lab on chip , 2019, Sensors and Actuators A: Physical.

[66]  J. Pulskamp,et al.  Thin-Film PZT Lateral Actuators With Extended Stroke , 2008, Journal of Microelectromechanical Systems.

[67]  Nikhil Deshpande,et al.  Towards a Magnetically Actuated Laser Scanner for Endoscopic Microsurgeries , 2017, J. Medical Robotics Res..

[68]  Ankur Gupta,et al.  Micro-electro-mechanical system–based drug delivery devices , 2019, Bioelectronics and Medical Devices.

[69]  Sung-Hoon Ahn,et al.  Woven type smart soft composite for soft morphing car spoiler , 2016 .

[70]  Ellis Meng,et al.  A Wireless Implantable Micropump for Chronic Drug Infusion Against Cancer. , 2016, Sensors and actuators. A, Physical.

[71]  Robin H. Liu,et al.  Fabrication and characterization of hydrogel-based microvalves , 2002 .

[72]  Flexible end-effector integrated with scanning actuator and optical waveguide for endoscopic fluorescence imaging diagnosis , 2015, 2015 28th IEEE International Conference on Micro Electro Mechanical Systems (MEMS).

[73]  K. Takahata,et al.  Wirelessly Heating Stents via Radiofrequency Resonance toward Enabling Endovascular Hyperthermia , 2019, Advanced healthcare materials.

[74]  K. Takahata,et al.  Frequency-controlled wireless shape-memory-alloy microactuators integrated using an electroplating bonding process , 2010 .

[75]  Jun Yang,et al.  A high-flow, self-filling piezoelectric pump driven by hybrid connected multiple chambers with umbrella-shaped valves , 2019 .

[76]  M. Madou,et al.  Microactuators toward microvalves for responsive controlled drug delivery , 2000 .

[77]  Blake Hannaford,et al.  McKibben artificial muscles: pneumatic actuators with biomechanical intelligence , 1999, 1999 IEEE/ASME International Conference on Advanced Intelligent Mechatronics (Cat. No.99TH8399).

[78]  T. Muthuramalingam,et al.  A review on recent research trends in servo pneumatic positioning systems , 2017 .

[79]  M. Elahinia,et al.  Manufacturing and processing of NiTi implants: A review , 2012 .

[80]  K. Takahata,et al.  Selective RF wireless control of integrated bulk-micromachined shape-memory-alloy actuators and its microfluidic application , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[81]  Martin Bastmeyer,et al.  Controlling the shape of 3D microstructures by temperature and light , 2019, Nature Communications.

[82]  Yanlei Hu,et al.  Influence of secondary converse piezoelectric effect on deflection of fully covered PZT actuators , 2012 .

[83]  Ahmad Athif Mohd Faudzi,et al.  Two chambers soft actuator realizing robotic gymnotiform swimmers fin , 2014, 2014 IEEE International Conference on Robotics and Biomimetics (ROBIO 2014).

[84]  D. Schmaljohann Thermo- and pH-responsive polymers in drug delivery. , 2006, Advanced drug delivery reviews.

[85]  Mohammad Hamiruce Marhaban,et al.  A Review of Pneumatic Actuators (Modeling and Control) , 2009 .

[86]  Dominiek Reynaerts,et al.  Fabrication and control of miniature McKibben actuators , 2011 .

[87]  Jinsong Leng,et al.  Shape memory polymers and their composites in biomedical applications. , 2019, Materials science & engineering. C, Materials for biological applications.

[88]  Kenichi Takahata,et al.  A resonant-heating stent for wireless endohyperthermia treatment of restenosis , 2015 .

[89]  A. Grumezescu,et al.  Applications of nanoscale drugs carriers in the treatment of chronic diseases , 2017 .

[90]  Qingsong Xu,et al.  A review on actuation and sensing techniques for MEMS-based microgrippers , 2017 .

[91]  Kenichi Takahata,et al.  RF-Powered Stent With Integrated Circuit Breaker for Safeguarded Wireless Hyperthermia Treatment , 2015, Journal of Microelectromechanical Systems.

[92]  Wei Duan,et al.  Lab-on-a-chip: a component view , 2010 .

[93]  Shafishuhaza Sahlan,et al.  Micromachined Shape-Memory-Alloy Microactuators and Their Application in Biomedical Devices , 2015, Micromachines.

[94]  Shuichi Wakimoto,et al.  Development of large intestine endoscope changing its stiffness , 2009, 2009 IEEE International Conference on Robotics and Biomimetics (ROBIO).

[95]  Jianrong Chen,et al.  Nanotechnology and biosensors. , 2004, Biotechnology advances.

[96]  J. Yunas,et al.  Electromagnetic Micro-Actuator with Silicon Membrane for Fluids Pump in Drug Delivery System , 2019, International Journal of Mechanical Engineering and Robotics Research.

[97]  Bhaskar Ghosh,et al.  Design and analysis of piezoelectric actuator for micro gripper , 2015 .

[98]  K. Takahata,et al.  A hydrogel-based wireless sensor using micromachined variable inductors with folded flex-circuit structures for biomedical applications , 2008, 2008 IEEE 21st International Conference on Micro Electro Mechanical Systems.

[99]  J. G. Smits Piezoelectric micropump with microvalves , 1989, Proceedings., Eighth University/Government/Industry Microelectronics Symposium.

[100]  Oriol Gomis-Bellmunt,et al.  Design Rules for Actuators in Active Mechanical Systems , 2009 .

[101]  Chia-Yen Lee,et al.  Design and fabrication of novel micro electromagnetic actuator , 2008, 2008 Symposium on Design, Test, Integration and Packaging of MEMS/MOEMS.

[102]  B. G. Sheeparamatti,et al.  Exploration of micro cantilever based electromagnetic actuator , 2016, 2016 International Conference on Electrical, Electronics, Communication, Computer and Optimization Techniques (ICEECCOT).

[103]  Adela Ben-Yakar,et al.  A 5-mm piezo-scanning fiber device for high speed ultrafast laser microsurgery , 2014 .

[104]  M. Feliachi,et al.  Design and experimental investigation of a bi-directional valveless electromagnetic micro-pump , 2018 .

[105]  M. Capanu,et al.  Design, fabrication, and testing of a bistable electromagnetically actuated microvalve , 2000, Journal of Microelectromechanical Systems.

[106]  Deqing Huang,et al.  High-Precision Tracking of Piezoelectric Actuator Using Iterative Learning Control and Direct Inverse Compensation of Hysteresis , 2019, IEEE Transactions on Industrial Electronics.

[107]  A. Isalgué,et al.  Low temperature crystallised Ti-rich NiTi shape memory alloy films for microactuators , 1999 .

[108]  K. Takahata,et al.  A thermoresponsive electromechanical microchip for temperature control in biomedical smart implants , 2017, 2017 IEEE 30th International Conference on Micro Electro Mechanical Systems (MEMS).

[109]  M. Wagner,et al.  Development of a polymer stent with shape memory effect as a drug delivery system , 2003, Journal of materials science. Materials in medicine.

[110]  Douglas L Packer,et al.  Amiodarone or an implantable cardioverter-defibrillator for congestive heart failure. , 2005, The New England journal of medicine.

[111]  Prasanna S. Gandhi,et al.  Design, Fabrication, and Characterization of a Pneumatic Micro Actuator , 2011 .

[112]  Giulio Dagnino,et al.  Frontiers of Medical Robotics: From Concept to Systems to Clinical Translation. , 2019, Annual review of biomedical engineering.

[113]  Jamie Paik,et al.  Stretchable Materials for Robust Soft Actuators towards Assistive Wearable Devices , 2016, Scientific Reports.

[114]  R. Wood,et al.  A novel low-profile shape memory alloy torsional actuator , 2010 .

[115]  Mohamed Sultan Mohamed Ali,et al.  A wirelessly-controlled piezoelectric microvalve for regulated drug delivery , 2018, Sensors and Actuators A: Physical.

[116]  S. Konishi,et al.  Thin flexible end-effector using pneumatic balloon actuator , 2000 .

[117]  D. Maillefer,et al.  A high-performance silicon micropump for an implantable drug delivery system , 1999, Technical Digest. IEEE International MEMS 99 Conference. Twelfth IEEE International Conference on Micro Electro Mechanical Systems (Cat. No.99CH36291).

[118]  Mohamed Sultan Mohamed Ali,et al.  Modeling and simulation of a wirelessly-powered thermopneumatic micropump for drug delivery applications , 2019, Indonesian Journal of Electrical Engineering and Informatics (IJEEI).

[119]  Nanguang Chen,et al.  Design and development of a 3D scanning MEMS OCT probe using a novel SiOB package assembly , 2008 .

[120]  Yingxiang Liu,et al.  A review of recent studies on non-resonant piezoelectric actuators , 2019, Mechanical Systems and Signal Processing.

[121]  Tanveer Saleh,et al.  PDMS-based dual-channel pneumatic micro-actuator , 2019, Smart Materials and Structures.

[122]  Mohammed Es-Souni,et al.  Assessing the biocompatibility of NiTi shape memory alloys used for medical applications , 2005, Analytical and bioanalytical chemistry.

[123]  I. Puchades,et al.  An Electromagnetic MEMS Actuator for Micropumps , 2006, Proceedings of the 2nd International Conference on Perspective Technologies and Methods in MEMS Design.

[124]  J. Chu,et al.  Piezoelectric peristaltic micropump integrated on a microfluidic chip , 2019, Sensors and Actuators A: Physical.

[125]  Yong Xian Ang,et al.  Micromachined Shape Memory Alloy Active Stent with Wireless Monitoring and Re-Expansion Features , 2020, 2020 IEEE 33rd International Conference on Micro Electro Mechanical Systems (MEMS).

[126]  G. Whitesides,et al.  Elastomeric Origami: Programmable Paper‐Elastomer Composites as Pneumatic Actuators , 2012 .

[127]  Po-Ying Li,et al.  Implantable MEMS drug delivery device for cancer radiation reduction , 2010, 2010 IEEE 23rd International Conference on Micro Electro Mechanical Systems (MEMS).

[128]  S. Dong,et al.  A piezoelectric pseudo-bimorph actuator , 2013 .

[129]  Chia-Yen Lee,et al.  Electromagnetically-Actuated Reciprocating Pump for High-Flow-Rate Microfluidic Applications , 2012, Sensors.

[130]  Kwang W. Oh,et al.  Lab-on-chip (LOC) devices and microfluidics for biomedical applications , 2012 .

[131]  Robert J. Wood,et al.  An Additive Millimeter‐Scale Fabrication Method for Soft Biocompatible Actuators and Sensors , 2017, Advanced Materials Technologies.

[132]  Dominiek Reynaerts,et al.  Chip-on-tip endoscope incorporating a soft robotic pneumatic bending microactuator , 2018, Biomedical microdevices.

[133]  Andreas Richter,et al.  Fluidic microchemomechanical integrated circuits processing chemical information. , 2012, Lab on a chip.

[134]  Shuichi Wakimoto,et al.  Development of large intestine endoscope changing its stiffness -2nd report: Improvement of stiffness change device and insertion experiment- , 2010, 2010 IEEE International Conference on Robotics and Biomimetics.

[135]  Russell W. Mailen,et al.  Thermo-mechanical transformation of shape memory polymers from initially flat discs to bowls and saddles , 2019, Smart Materials and Structures.

[136]  Sergey Y. Yurish,et al.  Smart sensors and MEMS , 2004 .

[137]  Frantisek Svec,et al.  Monolithic valves for microfluidic chips based on thermoresponsive polymer gels , 2003, Electrophoresis.

[138]  Gregory P. Carman,et al.  Three-dimensional thin-film shape memory alloy microactuator with two-way effect , 2002 .

[139]  Shuichi Wakimoto,et al.  Characteristics analysis and modeling of a miniature pneumatic curling rubber actuator , 2014 .

[140]  P. Chee,et al.  Electromagnetic actuation dual-chamber bidirectional flow micropump , 2018, Sensors and Actuators A: Physical.

[141]  Ian D. Walker,et al.  Soft robotics: Biological inspiration, state of the art, and future research , 2008 .

[142]  Alperen Toprak,et al.  Piezoelectric Membrane Actuators for Micropump Applications Using PVDF-TrFE , 2018, Journal of Microelectromechanical Systems.

[143]  Zhi Xu,et al.  Design and experimental performances of a piezoelectric stick-slip actuator for rotary motion , 2019, IOP Conference Series: Materials Science and Engineering.

[144]  M. A. Zainal,et al.  Wireless shape memory polymer microactuator for implantable drug delivery aplication , 2016, 2016 IEEE EMBS Conference on Biomedical Engineering and Sciences (IECBES).

[145]  D. Abbott,et al.  A recoil resilient lumen support, design, fabrication and mechanical evaluation , 2013 .

[146]  Andrew J. Fleming,et al.  Design of a Charge Drive for Reducing Hysteresis in a Piezoelectric Bimorph Actuator , 2016, IEEE/ASME Transactions on Mechatronics.

[147]  K. Takahata,et al.  Ferrofluid-enabled micro rotary-linear actuator for endoscopic three-dimensional imaging and spectroscopy , 2019, Smart Materials and Structures.

[148]  M. Kurosawa,et al.  A micro ultrasonic scalpel with sensing function , 2003, IEEE Symposium on Ultrasonics, 2003.

[149]  Dilraj Nadarajan,et al.  An in-body wireless communication system for targeted drug delivery: Design and simulation , 2014, 2014 International Symposium on Technology Management and Emerging Technologies.

[150]  Peng Li,et al.  Surface acoustic wave microfluidics. , 2013, Lab on a chip.

[151]  E. Chow,et al.  Wireless MEMS-based implantable medical devices for cardiology , 2017 .

[152]  Jianmin Miao,et al.  Enhanced Visualization of Fine Needles Under Sonographic Guidance Using a MEMS Actuator , 2015, Sensors.

[153]  Dongshin Kim,et al.  A bi-polymer micro one-way valve , 2007 .

[154]  Alan E. Rowan,et al.  Cytoskeletal stiffening in synthetic hydrogels , 2019, Nature Communications.

[155]  Takeshi Morita,et al.  Stepping piezoelectric actuators with large working stroke for nano-positioning systems: A review , 2019, Sensors and Actuators A: Physical.

[156]  Kenichi Takahata,et al.  A steerable smart catheter tip realized by flexible hydrogel actuator , 2016, 2016 IEEE 29th International Conference on Micro Electro Mechanical Systems (MEMS).

[157]  Jun Li,et al.  Controlled drug release from biodegradable thermoresponsive physical hydrogel nanofibers. , 2010, Journal of controlled release : official journal of the Controlled Release Society.

[158]  Elham Radvar,et al.  Supramolecular Peptide/Polymer Hybrid Hydrogels for Biomedical Applications. , 2018, Macromolecular bioscience.

[159]  Byung Kyu Kim,et al.  Institute of Physics Publishing Smart Materials and Structures a Superelastic Alloy Microgripper with Embedded Electromagnetic Actuators and Piezoelectric Force Sensors: a Numerical and Experimental Study , 2022 .

[160]  Gary M. Bone,et al.  High-Accuracy Position Control of a Rotary Pneumatic Actuator , 2018, IEEE/ASME Transactions on Mechatronics.

[161]  K. Takahata,et al.  A wireless implantable drug delivery device with hydrogel microvalves controlled by field-frequency tuning , 2011, 2011 IEEE 24th International Conference on Micro Electro Mechanical Systems.

[162]  E. Albers,et al.  Percutaneous closure of secundum atrial septal defects , 2012 .

[163]  Wei Lu,et al.  A Multiresponsive Anisotropic Hydrogel with Macroscopic 3D Complex Deformations , 2016 .

[164]  Suhail Kazi,et al.  Miniature parallel manipulator using TiNiCu shape-memory-alloy microactuators , 2015, 2015 10th Asian Control Conference (ASCC).

[165]  S. Ghadiali,et al.  Lab-on-a-Chip Platforms for Biophysical Studies of Cancer with Single-Cell Resolution. , 2018, Trends in biotechnology.

[166]  Stephanus Büttgenbach,et al.  Design and Assessment of a Micropositioning System Driven by Electromagnetic Actuators , 2017, IEEE/ASME Transactions on Mechatronics.

[167]  Il-Joo Cho,et al.  MEMS devices for drug delivery☆ , 2017, Advanced drug delivery reviews.

[168]  Yuandong Gu,et al.  A hydrogel-actuated environmentally sensitive microvalve for active flow control , 2003 .

[169]  G. Peters,et al.  E-drug delivery: a futuristic approach. , 2019, Drug discovery today.

[170]  Yu-Hsiang Hsu,et al.  Development of a piezoelectric-driven miniature pump for biomedical applications , 2015 .

[171]  K. Takahata,et al.  Experimental analysis on wireless heating of resonant stent for hyperthermia treatment of in-stent restenosis , 2019, Sensors and Actuators A: Physical.

[172]  Hareesh K. R. Kommepalli,et al.  Design, Fabrication, and Performance of a Piezoelectric Uniflex Microactuator , 2009, Journal of Microelectromechanical Systems.

[173]  A. Menciassi,et al.  Soft Robotic Manipulator for Improving Dexterity in Minimally Invasive Surgery , 2018, Surgical innovation.

[174]  D. Beebe,et al.  A valved responsive hydrogel microdispensing device with integrated pressure source , 2004, Journal of Microelectromechanical Systems.

[175]  Eko Supriyanto,et al.  Development of a half sphere bending soft actuator for flexible bronchoscope movement , 2014, 2014 IEEE International Symposium on Robotics and Manufacturing Automation (ROMA).

[176]  Patrick T. Mather,et al.  Review of progress in shape-memory polymers , 2007 .

[177]  Fan Yang,et al.  Design of Implementable Adaptive Control for Micro/Nano Positioning System Driven by Piezoelectric Actuator , 2016, IEEE Transactions on Industrial Electronics.

[178]  Koichi Suzumori,et al.  A Bending Pneumatic Rubber Actuator Realizing Soft-bodied Manta Swimming Robot , 2007, Proceedings 2007 IEEE International Conference on Robotics and Automation.

[179]  Roberto Cingolani,et al.  Microsurgery robots: addressing the needs of high-precision surgical interventions. , 2016, Swiss medical weekly.

[180]  Alaa AbuZaiter,et al.  Analysis of Thermomechanical Behavior of Shape-Memory-Alloy Bimorph Microactuator , 2014, 2014 5th International Conference on Intelligent Systems, Modelling and Simulation.

[181]  S. Sugiura,et al.  A multi-throughput multi-organ-on-a-chip system on a plate formatted pneumatic pressure-driven medium circulation platform. , 2017, Lab on a chip.

[182]  J. Grandchamp,et al.  Shape memory thin films with transition above room temperature from Ni-rich NiTi films , 2002 .

[183]  Akira Harada,et al.  Fast response dry-type artificial molecular muscles with [c2]daisy chains. , 2016, Nature chemistry.

[184]  A Ruzzu,et al.  Positioning system for catheter tips based on an active microvalve system , 1998 .

[185]  Liang Xue,et al.  Biodegradable shape-memory block co-polymers for fast self-expandable stents. , 2010, Biomaterials.

[186]  Robert J. Wood,et al.  Pop-up tissue retraction mechanism for endoscopic surgery , 2017, 2017 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS).

[187]  Pei Ling Leow,et al.  Wireless powered thermo-pneumatic micropump using frequency-controlled heater , 2015 .

[188]  Po-Ying Li,et al.  Implantable MEMS drug delivery pumps for small animal research , 2009, 2009 Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[189]  Po-Ying Li,et al.  An implantable MEMS micropump system for drug delivery in small animals , 2012, Biomedical microdevices.

[190]  S. Konishi,et al.  Linear Expansion and Contraction of Paired Pneumatic Baloon Bending Actuators Toward Telescopic Motion , 2009, 2009 IEEE 22nd International Conference on Micro Electro Mechanical Systems.

[191]  H. Tobushi,et al.  Mechanical Properties of Shape Memory Polymer of Polyurethane Series : Basic Characteristics of Stress-Strain-Temperature Relationship , 1992 .

[192]  Changping Li,et al.  Flexible substrate-based thermo-responsive valve applied in electromagnetically powered drug delivery system , 2018, Journal of Materials Science.

[193]  Q. Pei,et al.  High-field deformation of elastomeric dielectrics for actuators , 2000 .

[194]  Lung-Ming Fu,et al.  Micropumps and biomedical applications – A review , 2018, Microelectronic Engineering.

[195]  M. A. Zainal,et al.  Frequency-controlled wireless shape memory polymer microactuator for drug delivery application , 2017, Biomedical microdevices.

[196]  Rebecca S. Shawgo,et al.  BioMEMS for drug delivery , 2002 .

[197]  D. Figeys,et al.  Lab-on-a-chip: a revolution in biological and medical sciences , 2000, Analytical chemistry.

[198]  Philippe Dubois,et al.  Shape-memory polymers for multiple applications in the materials world , 2016 .

[199]  G. Stemme,et al.  Wafer-Scale Manufacturing of Bulk Shape-Memory-Alloy Microactuators Based on Adhesive Bonding of Titanium–Nickel Sheets to Structured Silicon Wafers , 2009, Journal of Microelectromechanical Systems.

[200]  Ying Yi,et al.  Electromagnetically powered electrolytic pump and thermo-responsive valve for drug delivery , 2015, 10th IEEE International Conference on Nano/Micro Engineered and Molecular Systems.

[201]  Weiwei Cui,et al.  Controllable drug release of electrospun thermoresponsive poly(N-isopropylacrylamide)/poly(2-acrylamido-2- methylpropanesulfonic acid) nanofibers. , 2012, Journal of biomedical materials research. Part A.

[202]  Marco Baù,et al.  Contactless Excitation of MEMS Resonant Sensors by Electromagnetic Driving , 2009 .

[203]  Mohamed Sultan Mohamed Ali,et al.  Radio-Controlled Microactuator Based on Shape-Memory-Alloy Spiral-Coil Inductor , 2013, Journal of Microelectromechanical Systems.

[204]  Xiaoyang Zhang,et al.  MEMS-BASED 3D CONFOCAL SCANNING MICROENDOSCOPE USING MEMS SCANNERS FOR BOTH LATERAL AND AXIAL SCAN. , 2014, Sensors and actuators. A, Physical.

[205]  Matthew W. Miller,et al.  Transcatheter atrial septal defect closure with the Amplatzer atrial septal occluder in 13 dogs: short- and mid-term outcome. , 2009, Journal of veterinary internal medicine.

[206]  Qiao Chen,et al.  An electromagnetically actuated micromirror with precise angle control for harsh environment optical switching applications , 2014 .

[207]  A. AbuZaiter,et al.  Frequency-Controlled Wireless Passive Thermopneumatic Micromixer , 2017, Journal of Microelectromechanical Systems.

[208]  Shuichi Wakimoto,et al.  Micro pneumatic curling actuator - Nematode actuator - , 2009, 2008 IEEE International Conference on Robotics and Biomimetics.

[209]  D. Marioli,et al.  Contactless electromagnetic excitation of resonant sensors made of conductive miniaturized structures , 2008 .

[210]  Ellis Meng,et al.  A MEMS electrochemical bellows actuator for fluid metering applications , 2013, Biomedical microdevices.

[211]  Philippe Lutz,et al.  Quasistatic displacement self-sensing method for cantilevered piezoelectric actuators. , 2009, The Review of scientific instruments.

[212]  Hongliang Ren,et al.  Hydrogel Actuators and Sensors for Biomedical Soft Robots: Brief Overview with Impending Challenges , 2018, Biomimetics.

[213]  R. Siegel,et al.  BioMEMS devices for drug delivery , 2009, IEEE Engineering in Medicine and Biology Magazine.

[214]  Robin H. Liu,et al.  Functional hydrogel structures for autonomous flow control inside microfluidic channels , 2000, Nature.

[215]  Daniele Pucci,et al.  Design and Control of a Magnetic Laser Scanner for Endoscopic Microsurgeries , 2019, IEEE/ASME Transactions on Mechatronics.