Estimation of the Binding Energy in Random Poly(Butylene terephtalate-co-thiodiethylene terephtalate) Copolyesters/Clay Nanocomposites via Molecular Simulation

Molecular mechanics/dynamics computer simulations are used to explore the atomic scale structure and to predict binding energy values for polymer/clay nanocomposites based on random poly(butylene terephtalate-co-thiodiethylene terephtalate) copolyesters, montmorillonite and several, different organic surfactant. Our results reveal that the energy of binding between the polymeric matrix and the montmorillonite platelet shows a decreasing trend with increasing molecular volume, V, of the organic compounds used as surfactant, and that the substitution of hydrogen atoms with a –SH moiety in the organic molecules results in progressively increasing interaction of the surfactant with the copolymer, as the sulfur-containing comonomer concentration is increased. Finally, under the hypothesis that the clay platelets are uniformly dispersed within the polymer matrix, the pristine clay still yields a high interfacial strength between MMT and copolymers.

[1]  T. Kurauchi,et al.  Swelling behaviour of montmorillonite by poly-6-amide , 1988, Clay Minerals.

[2]  L. Goettler,et al.  Predicting the binding energy for nylon 6,6/clay nanocomposites by molecular modeling ☆ , 2002 .

[3]  Ulrich W. Suter,et al.  Conformational Theory of Large Molecules: The Rotational Isomeric State Model in Macromolecular Systems , 1994 .

[4]  H. Olphen An Introduction to Clay Colloid Chemistry , 1977 .

[5]  Emmanuel P. Giannelis,et al.  NEW ADVANCES IN POLYMER/LAYERED SILICATE NANOCOMPOSITES , 2002 .

[6]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[7]  V. Siracusa,et al.  Synthesis and thermal characterization of poly(butylene terephthalate-co-thiodiethylene terephthalate) copolyesters , 2002 .

[8]  P. Dubois,et al.  Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials , 2000 .

[9]  L. Verlet Computer "Experiments" on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules , 1967 .

[10]  Warren J. Hehre,et al.  AB INITIO Molecular Orbital Theory , 1986 .

[11]  Toshio Kurauchi,et al.  Mechanical properties of nylon 6-clay hybrid , 1993 .

[12]  H. Sun,et al.  Force field for computation of conformational energies, structures, and vibrational frequencies of aromatic polyesters , 1994, J. Comput. Chem..

[13]  Emmanuel P. Giannelis,et al.  Polymer-layered silicate nanocomposites: Synthesis, properties and applications , 1998 .

[14]  Toshio Kurauchi,et al.  Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with ε-caprolactam , 1993 .

[15]  W. Podkościelny,et al.  Polymers containing sulfur in the side chain , 1996 .

[16]  T. Kurauchi,et al.  Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ∊-caprolactam , 1993 .

[17]  Maurizio Fermeglia,et al.  A novel approach to thermophysical properties prediction for chloro-fluoro-hydrocarbons , 1999 .

[18]  B. Theng The Chemistry of Clay-Organic Reactions , 2024 .

[19]  V. Drits,et al.  The distribution of octahedral cations in the 2:1 layers of dioctahedral smectites studied by oblique-texture electron diffraction , 1984, Clay Minerals.

[20]  H. Berendsen,et al.  Molecular dynamics with coupling to an external bath , 1984 .

[21]  P. Flory Principles of polymer chemistry , 1953 .

[22]  Frank E. Harris,et al.  Molecular Orbital Theory , 1967 .

[23]  Toshio Kurauchi,et al.  One‐pot synthesis of nylon 6–clay hybrid , 1993 .

[24]  Thomas J. Pinnavaia,et al.  Polymer-layered silicate nanocomposites: an overview , 1999 .

[25]  Maurizio Fermeglia,et al.  Computer simulation of nylon-6/organoclay nanocomposites: prediction of the binding energy , 2003 .

[26]  P. Kollman,et al.  A well-behaved electrostatic potential-based method using charge restraints for deriving atomic char , 1993 .

[27]  D.-K. Yang,et al.  Dynamical heterogeneity in nanoconfined poly(styrene) chains , 2000 .

[28]  M. L. Connolly Solvent-accessible surfaces of proteins and nucleic acids. , 1983, Science.

[29]  P. Kollman,et al.  Application of RESP charges to calculate conformational energies, hydrogen bond energies, and free energies of solvation , 1993 .

[30]  P. D. Fleming,et al.  Structure and energy of thin films of poly-(1,4-cis-butadiene): A new atomistic approach , 1995 .

[31]  J. W. Jordan The Chemistry of Clay-Organic Reactions , 1975 .

[32]  H. Sun,et al.  COMPASS: An ab Initio Force-Field Optimized for Condensed-Phase ApplicationsOverview with Details on Alkane and Benzene Compounds , 1998 .

[33]  Maurizio Fermeglia,et al.  Equation‐of‐state parameters for pure polymers by molecular dynamics simulations , 1999 .

[34]  W. Becktel,et al.  Comparison of van der Waals and semiempirical calculations of the molecular volumes of small molecules and proteins. , 1997, Biopolymers.