A Review of Ice Cloud Optical Property Models for Passive Satellite Remote Sensing

The current wealth of spaceborne passive and active measurements from ultraviolet to the infrared wavelengths provides an unprecedented opportunity to construct ice cloud bulk optical property models that lead to consistent ice cloud property retrievals across multiple sensors and platforms. To infer the microphysical and radiative properties of ice clouds from these satellite measurements, the general approach is to assume an ice cloud optical property model that implicitly assumes the habit (shape) and size distributions of the ice particles in these clouds. The assumption is that this ice optical property model will be adequate for global retrievals. In this review paper, we first summarize the key optical properties of individual particles and then the bulk radiative properties of their ensemble, followed by a review of the ice cloud models developed for application to satellite remote sensing. We illustrate that the random orientation condition assumed for ice particles is arguably justified for passive remote sensing applications based on radiometric measurements. The focus of the present discussion is on the ice models used by the Moderate Resolution Imaging Spectroradiometer (MODIS) and the Clouds and Earth’s Radiant Energy System (CERES) science teams. In addition, we briefly review the ice cloud models adopted by the Polarization and Directionality of the Earth’s Reflectance (POLDER) and the Himawari-8 Advanced Himawari Imager (AHI) for ice cloud retrievals. We find that both the MODIS Collection 6 ice model and the CERES two-habit model result in spectrally consistent retrievals.

[1]  James R. Wait SCATTERING OF A PLANE WAVE FROM A CIRCULAR DIELECTRIC CYLINDER AT OBLIQUE INCIDENCE , 1955 .

[2]  P. Waterman Matrix formulation of electromagnetic scattering , 1965 .

[3]  K. Yee Numerical solution of initial boundary value problems involving maxwell's equations in isotropic media , 1966 .

[4]  J. Houghton,et al.  The detection of ice clouds from remote measurements of their emission in the far infra‐red , 1971 .

[5]  K. Liou Light scattering by ice clouds in the visible and infrared - A theoretical study. , 1972 .

[6]  K. Liou Electromagnetic scattering by arbitrarily oriented ice cylinders. , 1972, Applied optics.

[7]  E. Purcell,et al.  Scattering and Absorption of Light by Nonspherical Dielectric Grains , 1973 .

[8]  Faculteit der Wiskunde en Natuurwetenschappen,et al.  The spherical albedo of a planet covered with a homogeneous cloud layer , 1974 .

[9]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[10]  S. Asano,et al.  Light scattering by a spheroidal particle. , 1975, Applied optics.

[11]  P. Waterman,et al.  Matrix methods in potential theory and electromagnetic scattering , 1979 .

[12]  G. Stephens Radiative Transfer on a Linear Lattice: Application to Anisotropic Ice Crystal Clouds , 1980 .

[13]  S. Twomey,et al.  Inferences of Gross Microphysical Properties of Clouds from Spectral Reflectance Measurements , 1980 .

[14]  Graeme L. Stephens,et al.  Radiative Properties of Cirrus Clouds in the Infrared Region , 1980 .

[15]  Skylab near-infrared observations of clouds indicating supercooled liquid water droplets , 1982 .

[16]  S. Twomey,et al.  Spectral Reflectance of Clouds in the Near-Infrared: Comparison of Measurements and Calculations , 1982 .

[17]  K. Liou,et al.  Polarized light scattering by hexagonal ice crystals: theory. , 1982, Applied optics.

[18]  W. Menke Geophysical data analysis : discrete inverse theory , 1984 .

[19]  Toshiro Inoue,et al.  On the Temperature and Effective Emissivity Determination of Semi-Transparent Cirrus Clouds by Bi-Spectral Measurements in the 10μm Window Region , 1985 .

[20]  K. Liou Influence of Cirrus Clouds on Weather and Climate Processes: A Global Perspective , 1986 .

[21]  J. Hovenier,et al.  The adding method for multiple scattering calculations of polarized light , 1987 .

[22]  J. Foot,et al.  Some observations of the optical properties of clouds , 2006 .

[23]  J. Foot,et al.  Some observations of the optical properties of clouds. II: Cirrus , 1988 .

[24]  K. Stamnes,et al.  Numerically stable algorithm for discrete-ordinate-method radiative transfer in multiple scattering and emitting layered media. , 1988, Applied optics.

[25]  S. Twomey,et al.  Remote sensing of cloud parameters from spectral reflectance in the near-infrared , 1989 .

[26]  K. Liou,et al.  Solar Radiative Transfer in Cirrus Clouds. Part I: Single-Scattering and Optical Properties of Hexagonal Ice Crystals , 1989 .

[27]  M. King,et al.  Determination of the optical thickness and effective particle radius of clouds from reflected solar , 1990 .

[28]  A. Lacis,et al.  A description of the correlated k distribution method for modeling nongray gaseous absorption, thermal emission, and multiple scattering in vertically inhomogeneous atmospheres , 1991 .

[29]  M. King,et al.  Determination of the Optical Thickness and Effective Particle Radius of Clouds from Reflected Solar Radiation Measurements. Part II: Marine Stratocumulus Observations , 1991 .

[30]  W. Rossow,et al.  ISCCP Cloud Data Products , 1991 .

[31]  A. Macke,et al.  Scattering of light by polyhedral ice crystals. , 1993, Applied optics.

[32]  Patrick Minnis,et al.  Inference of cirrus cloud properties using satellite-observed visible and infrared radiances. Part I: parameterization of radiance fields , 1993 .

[33]  Darren L. Jackson,et al.  A physical retrieval of cloud liquid water over the global oceans using special sensor microwave/imager (SSM/I) observations , 1993 .

[34]  B. Draine,et al.  Discrete-Dipole Approximation For Scattering Calculations , 1994 .

[35]  M. Mishchenko,et al.  Light scattering by polydispersions of randomly oriented spheroids with sizes comparable to wavelengths of observation. , 1994, Applied optics.

[36]  Annick Bricaud,et al.  The POLDER mission: instrument characteristics and scientific objectives , 1994, IEEE Trans. Geosci. Remote. Sens..

[37]  K. Liou,et al.  Finite-difference time domain method for light scattering by small ice crystals in three-dimensional space , 1996 .

[38]  A. Macke,et al.  Single Scattering Properties of Atmospheric Ice Crystals , 1996 .

[39]  G. Rybicki Radiative transfer , 2019, Climate Change and Terrestrial Ecosystem Modeling.

[40]  J. Peltoniemi,et al.  LIGHT SCATTERING BY GAUSSIAN RANDOM PARTICLES: RAY OPTICS APPROXIMATION , 1996 .

[41]  K. Liou,et al.  Geometric-optics-integral-equation method for light scattering by nonspherical ice crystals. , 1996, Applied optics.

[42]  David A. Goss,et al.  Color and Light in Nature , 1997 .

[43]  Ping Yang,et al.  Light scattering by hexagonal ice crystals: solutions by a ray-by-ray integration algorithm , 1997 .

[44]  Patrick Minnis,et al.  Parameterizations of reflectance and effective emittance for satellite remote sensing of cloud properties , 1998 .

[45]  Larry D. Travis,et al.  Light scattering by nonspherical particles : theory, measurements, and applications , 1998 .

[46]  Michael D. King,et al.  Clouds and the Earth's Radiant Energy System (CERES): algorithm overview , 1998, IEEE Trans. Geosci. Remote. Sens..

[47]  K. Liou,et al.  Single-scattering properties of complex ice crystals in terrestrial atmosphere , 1998 .

[48]  Pierre H. Flamant,et al.  OBSERVATIONS OF HORIZONTALLY ORIENTED ICE CRYSTALS IN CIRRUS CLOUDS WITH POLDER-1/ADEOS-1 , 1999 .

[49]  George A. Isaac,et al.  Ice particle habits in Arctic clouds , 1999 .

[50]  W. Menzel,et al.  Eight Years of High Cloud Statistics Using HIRS , 1999 .

[51]  A. Korolev,et al.  Ice particle habits in stratiform clouds , 2000 .

[52]  Bryan A. Baum,et al.  Remote sensing of cloud properties using MODIS airborne simulator imagery during SUCCESS: 1. Data and models , 2000 .

[53]  A. Macke,et al.  Polarized light scattering by inhomogeneous hexagonal monocrystals: Validation with ADEOS-POLDER measurements , 2001 .

[54]  Andrew A. Lacis,et al.  Scattering, Absorption, and Emission of Light by Small Particles , 2002 .

[55]  Matthew Bailey,et al.  Nucleation effects on the habit of vapour grown ice crystals from −18 to −42°C , 2002 .

[56]  J. Iaquinta,et al.  A general approach for deriving the properties of cirrus and stratiform ice cloud particles , 2002 .

[57]  Bryan A. Baum,et al.  The Development of Midlatitude Cirrus Models for MODIS Using FIRE-I, FIRE-II, and ARM In Situ Data , 2002 .

[58]  E. O'connor,et al.  The CloudSat mission and the A-train: a new dimension of space-based observations of clouds and precipitation , 2002 .

[59]  S. Massie,et al.  Distribution of tropical cirrus in relation to convection , 2002 .

[60]  David M. Winker,et al.  The CALIPSO mission: spaceborne lidar for observation of aerosols and clouds , 2003, SPIE Asia-Pacific Remote Sensing.

[61]  W. Paul Menzel,et al.  The MODIS cloud products: algorithms and examples from Terra , 2003, IEEE Trans. Geosci. Remote. Sens..

[62]  W. Paul Menzel,et al.  Cloud and aerosol properties, precipitable water, and profiles of temperature and water vapor from MODIS , 2003, IEEE Trans. Geosci. Remote. Sens..

[63]  Matthew Bailey,et al.  Growth Rates and Habits of Ice Crystals between −20° and −70°C , 2004 .

[64]  Arnaud Delaval,et al.  Improving Retrievals of Cirrus Cloud Particle Size Coupling Lidar and Three-Channel Radiometric Techniques , 2004 .

[65]  Steven Platnick,et al.  Remote Sensing of Liquid Water and Ice Cloud Optical Thickness and Effective Radius in the Arctic: Application of Airborne Multispectral MAS Data , 2004 .

[66]  Joop W. Hovenier,et al.  Transfer of Polarized Light in Planetary Atmospheres , 2004 .

[67]  Yongxiang Hu,et al.  Geometrical-optics solution to light scattering by droxtal ice crystals. , 2004, Applied optics.

[68]  Bryan A. Baum,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part I: Microphysical Data and Models. , 2005 .

[69]  M. King,et al.  Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part II: Narrowband Models , 2005 .

[70]  S. Bony,et al.  Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements , 2005 .

[71]  G. Kattawar,et al.  Scattering and absorption property database for nonspherical ice particles in the near- through far-infrared spectral region. , 2005, Applied optics.

[72]  Rob Roebeling,et al.  Cloud property retrievals for climate monitoring: Implications of differences between Spinning Enhanced Visible and Infrared Imager (SEVIRI) on METEOSAT‐8 and Advanced Very High Resolution Radiometer (AVHRR) on NOAA‐17 , 2006 .

[73]  ’. O,et al.  Microphysical and Optical Properties of Atmospheric Ice Crystals at South Pole Station , 2006 .

[74]  C. Schueler,et al.  The NPOESS VIIRS Day/Night Visible Sensor , 2006 .

[75]  A. Lacis,et al.  Multiple Scattering of Light by Particles: Radiative Transfer and Coherent Backscattering , 2006 .

[76]  Zhaoyan Liu,et al.  The depolarization - attenuated backscatter relation: CALIPSO lidar measurements vs. theory. , 2007, Optics express.

[77]  Dong L. Wu,et al.  Cloud ice: A climate model challenge with signs and expectations of progress , 2007 .

[78]  Alfons G. Hoekstra,et al.  The discrete dipole approximation: an overview and recent developments , 2007 .

[79]  Robin J. Hogan,et al.  A variational scheme for retrieving ice cloud properties from combined radar, lidar, and infrared radiometer , 2008 .

[80]  G. Kattawar,et al.  Influence of ice particle model on retrieving cloud optical thickness from satellite measurements: model comparison and implication for climate study , 2009 .

[81]  Steven Platnick,et al.  Influence of ice particle model on satellite ice cloud retrieval: lessons learned from MODIS and POLDER cloud product comparison , 2009 .

[82]  Anthony J. Baran,et al.  A review of the light scattering properties of cirrus , 2009 .

[83]  Bryan A. Baum,et al.  Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES‐R/ABI , 2010 .

[84]  Patrick Minnis,et al.  CERES Edition 3 Cloud Retrievals , 2010 .

[85]  R. Hogan,et al.  Combined CloudSat-CALIPSO-MODIS retrievals of the properties of ice clouds , 2010 .

[86]  Bryan A. Baum,et al.  Scattering and absorption of light by ice particles: Solution by a new physical-geometric optics hybrid method , 2011 .

[87]  Sunny Sun-Mack,et al.  CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part I: Algorithms , 2011, IEEE Transactions on Geoscience and Remote Sensing.

[88]  Zhibo Zhang,et al.  Improvements in Shortwave Bulk Scattering and Absorption Models for the Remote Sensing of Ice Clouds , 2011 .

[89]  B. Cairns,et al.  Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements - Part 2: Application to the Research Scanning Polarimeter , 2012 .

[90]  B. Cairns,et al.  Interactive comment on “Remote sensing of ice crystal asymmetry parameter using multi-directional polarization measurements – Part 1: Methodology and evaluation with simulated measurements” by B. van Diedenhoven et al , 2012 .

[91]  D. Winker,et al.  Cloud ice water content retrieved from the CALIOP space‐based lidar , 2012 .

[92]  Xiao-dong Liu,et al.  On the Use of Scattering Kernels to Calculate Ice Cloud Bulk Optical Properties , 2012 .

[93]  A. Uchiyama,et al.  Irregularly shaped ice aggregates in optical modeling of convectively generated ice clouds , 2012 .

[94]  Bryan A. Baum,et al.  Study of Horizontally Oriented Ice Crystals with CALIPSO Observations and Comparison with Monte Carlo Radiative Transfer Simulations , 2012 .

[95]  Andi Walther,et al.  Implementation of the Daytime Cloud Optical and Microphysical Properties Algorithm (DCOMP) in PATMOS-x , 2012 .

[96]  A. Baran From the single-scattering properties of ice crystals to climate prediction: A way forward , 2012 .

[97]  Andrew J. Heymsfield,et al.  Ice Cloud Particle Size Distributions and Pressure-Dependent Terminal Velocities from In Situ Observations at Temperatures from 0° to −86°C , 2013 .

[98]  Karl-Göran Karlsson,et al.  CLARA-A1: a cloud, albedo, and radiation dataset from 28 yr of global AVHRR data , 2013 .

[99]  Jacques Pelon,et al.  Retrieval of Cloud Properties Using CALIPSO Imaging Infrared Radiometer. Part II: Effective Diameter and Ice Water Path , 2013 .

[100]  Ping Yang,et al.  Efficient implementation of the invariant imbedding T-matrix method and the separation of variables method applied to large nonspherical inhomogeneous particles , 2013 .

[101]  Denis Tremblay,et al.  Suomi NPP CrIS measurements, sensor data record algorithm, calibration and validation activities, and record data quality , 2013 .

[102]  Glynn C. Hulley,et al.  The Atmospheric Infrared Sounder Version 6 cloud products , 2013 .

[103]  G. Mace,et al.  Evaluation of Several A-Train Ice Cloud Retrieval Products with In Situ Measurements Collected during the SPARTICUS Campaign , 2013 .

[104]  P. Yang,et al.  Comparison of PARASOL Observations with Polarized Reflectances Simulated Using Different Ice Habit Mixtures , 2013 .

[105]  Francois Montagner,et al.  Metop-B, the second satellite of the EUMETSAT Polar System, in orbit , 2013, Optics & Photonics - Optical Engineering + Applications.

[106]  H. Chepfer,et al.  Assessment of Global Cloud Datasets from Satellites: Project and Database Initiated by the GEWEX Radiation Panel , 2013 .

[107]  Andi Walther,et al.  The Pathfinder Atmospheres–Extended AVHRR Climate Dataset , 2014 .

[108]  Bryan A. Baum,et al.  Ice cloud single-scattering property models with the full phase matrix at wavelengths from 0.2 to 100 µm , 2014 .

[109]  A. Hou,et al.  The Global Precipitation Measurement Mission , 2014 .

[110]  Steven Platnick,et al.  Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms , 2014 .

[111]  Jerome Riedi,et al.  Investigation of ice particle habits to be used for ice cloud remote sensing for the GCOM-C satellite mission , 2015 .

[112]  Steven Platnick,et al.  Retrieval of Cirrus Cloud Optical Depth under Day and Night Conditions from MODIS Collection 6 Cloud Property Data , 2015, Remote. Sens..

[113]  Xin Huang,et al.  Effect of mineral dust aerosol aspect ratio on polarized reflectance , 2015 .

[114]  S. Matrosov The Use of CloudSat Data to Evaluate Retrievals of Total Ice Content in Precipitating Cloud Systems from Ground-Based Operational Radar Measurements , 2015 .

[115]  Steven Platnick,et al.  Resolving ice cloud optical thickness biases between CALIOP and MODIS using infrared retrievals , 2015 .

[116]  G. Mace,et al.  CloudSat 2C‐ICE product update with a new Ze parameterization in lidar‐only region , 2015, Journal of geophysical research. Atmospheres : JGR.

[117]  L. Fleischer Radiation And Cloud Processes In The Atmosphere Theory Observation And Modeling , 2016 .

[118]  Zhibo Zhang,et al.  Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 2. Retrieval evaluation , 2016 .

[119]  Luca Konig,et al.  Light And Color In The Outdoors , 2016 .

[120]  Zhibo Zhang,et al.  Retrieval of ice cloud properties using an optimal estimation algorithm and MODIS infrared observations: 1. Forward model, error analysis, and information content , 2016, Journal of geophysical research. Atmospheres : JGR.

[121]  A. Okuyama,et al.  An Introduction to Himawari-8/9— Japan’s New-Generation Geostationary Meteorological Satellites , 2016 .

[122]  Steven Platnick,et al.  The MODIS Cloud Optical and Microphysical Products: Collection 6 Updates and Examples From Terra and Aqua , 2017, IEEE Transactions on Geoscience and Remote Sensing.

[123]  G. Kattawar,et al.  Validation of quasi-invariant ice cloud radiative quantities with MODIS satellite-based cloud property retrievals. , 2017, Journal of quantitative spectroscopy & radiative transfer.

[124]  Maxim A Yurkin,et al.  On the concept of random orientation in far-field electromagnetic scattering by nonspherical particles. , 2017, Optics letters.

[125]  Patrick Minnis,et al.  Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations , 2017 .

[126]  M. King,et al.  Ice particle morphology and microphysical properties of cirrus clouds inferred from combined CALIOP‐IIR measurements , 2017 .

[127]  Jie Gong,et al.  Microphysical Properties of Frozen Particles Inferred from Global Precipitation Measurement (GPM) Microwave Imager (GMI) Polarimetric Measurements. , 2016, Atmospheric chemistry and physics.

[128]  G. Kattawar,et al.  Physical-geometric optics method for large size faceted particles. , 2017, Optics express.

[129]  A. D. Del Genio,et al.  An Improved Convective Ice Parameterization for the NASA GISS Global Climate Model and Impacts on Cloud Ice Simulation. , 2017, Journal of climate.

[130]  Riko Oki,et al.  THE GLOBAL PRECIPITATION MEASUREMENT (GPM) MISSION FOR SCIENCE AND SOCIETY. , 2017, Bulletin of the American Meteorological Society.

[131]  Timothy J. Schmit,et al.  A Closer Look at the ABI on the GOES-R Series , 2017 .

[132]  E. Hesse,et al.  The applicability of physical optics in the millimetre and sub-millimetre spectral region. Part II: Application to a three-component model of ice cloud and its evaluation against the bulk single-scattering properties of various other aggregate models , 2018 .

[133]  Nurfiena Sagita Putri,et al.  Cloud Property Retrieval from Multiband Infrared Measurements by Himawari-8 , 2018 .