Constraining a physically based Soil‐Vegetation‐Atmosphere Transfer model with surface water content and thermal infrared brightness temperature measurements using a multiobjective approach

[1] This article reports on a multiobjective approach which is carried out on the physically based Soil-Vegetation-Atmosphere Transfer (SVAT) model. This approach is designed for (1) analyzing the model sensitivity to its input parameters under various environmental conditions and (2) assessing input parameters through the combined assimilation of the surface water content and the thermal infrared brightness temperature. To reach these goals, a multiobjective calibration iterative procedure (MCIP) is applied on the Simple Soil Plant Atmosphere Transfer–Remote Sensing (SiSPAT-RS) model. This new multiobjective approach consists of performing successive contractions of the feasible parameter space with the multiobjective generalized sensitivity analysis algorithm. Results show that the MCIP is an original and pertinent approach both for improving model calibration (i.e., reducing the a posteriori preferential ranges) and for driving a detailed SVAT model using various calibration data. The usefulness of the water content of the upper 5 cm and the thermal infrared brightness temperature for retrieving quantitative information about the main input surface parameters is also underlined. This study opens perspectives in the combined assimilation of various multispectral remotely sensed observations, such as passive microwaves and thermal infrared signals.

[1]  C. Federer,et al.  A soil-plant-atmosphere model for transpiration and availability of soil water , 1979 .

[2]  P. Jarvis The Interpretation of the Variations in Leaf Water Potential and Stomatal Conductance Found in Canopies in the Field , 1976 .

[3]  S. Sorooshian,et al.  A Shuffled Complex Evolution Metropolis algorithm for optimization and uncertainty assessment of hydrologic model parameters , 2002 .

[4]  J.-P. Wigneron,et al.  Using a coupled crop-SVAT model to assess crop canopy processes from remote sensing data , 2001, IGARSS 2001. Scanning the Present and Resolving the Future. Proceedings. IEEE 2001 International Geoscience and Remote Sensing Symposium (Cat. No.01CH37217).

[5]  David E. Goldberg,et al.  Genetic Algorithms in Search Optimization and Machine Learning , 1988 .

[6]  W. Verhoef Light scattering by leaf layers with application to canopy reflectance modelling: The SAIL model , 1984 .

[7]  Luis A. Bastidas,et al.  Calibrating a land surface model of varying complexity using multicriteria methods and the Cabauw dataset , 2002 .

[8]  Soroosh Sorooshian,et al.  Sensitivity analysis of a land surface scheme using multicriteria methods , 1999 .

[9]  Van Genuchten,et al.  A closed-form equation for predicting the hydraulic conductivity of unsaturated soils , 1980 .

[10]  Jean-Pierre Frangi,et al.  Effect of aerodynamic resistance modelling on SiSPAT-RS simulated surface fluxes , 2002 .

[11]  Eleanor J. Burke,et al.  Using a modeling approach to predict soil hydraulic properties from passive microwave measurements , 1998, IEEE Trans. Geosci. Remote. Sens..

[12]  S. Sorooshian,et al.  Effective and efficient algorithm for multiobjective optimization of hydrologic models , 2003 .

[13]  Eleanor J. Burke,et al.  Exploring the potential for multipatch soil-moisture retrievals using multiparameter optimization techniques , 2002, IEEE Trans. Geosci. Remote. Sens..

[14]  W. James Shuttleworth,et al.  Multiobjective calibration and sensitivity of a distributed land surface water and energy balance model , 2001 .

[15]  W. J. Shuttleworth,et al.  Parameter estimation of a land surface scheme using multicriteria methods , 1999 .

[16]  W. Verhoef Earth observation modelling based on layer scattering matrices , 1984 .

[17]  Luis A. Bastidas,et al.  Using a multiobjective approach to retrieve information on surface properties used in a SVAT model , 2004 .

[18]  W. Crow,et al.  The assimilation of remotely sensed soil brightness temperature imagery into a land surface model using Ensemble Kalman filtering: a case study based on ESTAR measurements during SGP97 , 2003 .

[19]  Jean-Pierre Wigneron,et al.  Estimation of Evapotranspiration and Photosynthesis by Assimilation of Remote Sensing Data into SVAT Models , 1999 .

[20]  Jean-Pierre Wigneron,et al.  An interactive vegetation SVAT model tested against data from six contrasting sites , 1998 .

[21]  P. Milly Moisture and heat transport in hysteretic, inhomogeneous porous media: A matric head‐based formulation and a numerical model , 1982 .

[22]  D. Vidal-Madjar,et al.  Assimilation of soil moisture inferred from infrared remote sensing in a hydrological model over the HAPEX-MOBILHY region , 1994 .

[23]  Soroosh Sorooshian,et al.  Toward improved streamflow forecasts: value of semidistributed modeling , 2001 .

[24]  Thomas J. Schmugge,et al.  Remote estimation of soil moisture availability and fractional vegetation cover for agricultural fields , 1990 .

[25]  Isabelle Braud,et al.  A simple soil-plant-atmosphere transfer model (SiSPAT) development and field verification , 1995 .

[26]  G.J.R. Soer Estimation of regional evapotranspiration and soil moisture conditions using remotely sensed crop surface temperatures , 1980 .

[27]  Catherine Ottlé,et al.  Analytical parameterization of canopy directional emissivity and directional radiance in the thermal infrared. Application on the retrieval of soil and foliage temperatures using two directional measurements , 1997 .

[28]  P. Camillo,et al.  Using One- or Two-Layer Models for Evaporation Estimation with Remotely Sensed Data , 1991 .

[29]  Henrik Madsen,et al.  Automatic calibration of a conceptual rainfall-runoff model using multiple objectives. , 2000 .

[30]  T. Schmugge,et al.  Vegetation effects on the microwave emission of soils , 1991 .

[31]  C. Ottlé,et al.  Future directions for advanced evapotranspiration modeling: Assimilation of remote sensing data into crop simulation models and SVAT models , 2005 .

[32]  Steven A. Margulis,et al.  Variational Assimilation of Radiometric Surface Temperature and Reference-Level Micrometeorology into a Model of the Atmospheric Boundary Layer and Land Surface , 2003 .

[33]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Multiple and noncommensurable measures of information , 1998 .

[34]  Jérôme Demarty Développement et application du modèle SiSPAT-RS à l'échelle de la parcelle et dans le cadre de l'expérience alpilles ReSeDA , 2001 .

[35]  Luis A. Bastidas,et al.  Multicriteria parameter estimation for models of stream chemical composition , 2002 .

[36]  S. Sorooshian,et al.  Automatic calibration of conceptual rainfall-runoff models: sensitivity to calibration data , 1996 .

[37]  Jean-Pierre Wigneron,et al.  Estimation of energy fluxes from thermal infrared, spectral reflectances, microwave data and SVAT modeling , 1999 .

[38]  J. Clevers,et al.  Combined use of optical and microwave remote sensing data for crop growth monitoring , 1996 .

[39]  N. Brisson,et al.  Seasonal estimation of evaporation and stomatal conductance over a soybean field using surface IR temperatures , 1995 .

[40]  M. Birke,et al.  Magnetic susceptibility as indicator of environmental pollution of soils in Tallinn , 1999 .

[41]  Martha C. Anderson,et al.  Estimating subpixel surface temperatures and energy fluxes from the vegetation index-radiometric temperature relationship , 2003 .

[42]  Hoshin V. Gupta,et al.  Exploring the relationship between complexity and performance in a land surface model using the multicriteria method , 2002 .

[43]  F. Baret,et al.  Coupling canopy functioning and radiative transfer models for remote sensing data assimilation , 2001 .

[44]  Soroosh Sorooshian,et al.  Multi-objective global optimization for hydrologic models , 1998 .

[45]  Robert J. Gurney,et al.  The theoretical relationship between foliage temperature and canopy resistance in sparse crops , 1990 .

[46]  F. R. Schiebe,et al.  Large area mapping of soil moisture using the ESTAR passive microwave radiometer , 1995 .

[47]  Yann Kerr,et al.  Monitoring energy and mass transfers during the Alpilles-ReSEDA experiment , 2002 .

[48]  Soroosh Sorooshian,et al.  Toward improved calibration of hydrologic models: Combining the strengths of manual and automatic methods , 2000 .

[49]  Jean-Christophe Calvet,et al.  From Near-Surface to Root-Zone Soil Moisture Using Year-Round Data , 2000 .

[50]  Wim G.M. Bastiaanssen,et al.  Irrigation Performance using Hydrological and Remote Sensing Modeling , 2002 .

[51]  Gérard Dedieu,et al.  Calibrating a Coupled SVAT–Vegetation Growth Model with Remotely Sensed Reflectance and Surface Temperature—A Case Study for the HAPEX-Sahel Grassland Sites , 2000 .

[52]  Thomas J. Jackson,et al.  Calibrating a soil water and energy budget model with remotely sensed data to obtain quantitative information about the soil , 1997 .

[53]  N. Bruguier,et al.  A simple algorithm to retrieve soil moisture and vegetation biomass using passive microwave measurements over crop fields , 1995 .

[54]  Yann Kerr,et al.  Monitoring water interception by crop fields from passive microwave observations , 1996 .

[55]  Thomas J. Jackson,et al.  Soil moisture mapping at regional scales using microwave radiometry: the Southern Great Plains Hydrology Experiment , 1999, IEEE Trans. Geosci. Remote. Sens..

[56]  Jean-Pierre Wigneron,et al.  SVAT modeling over the Alpilles-ReSeDA experiment: comparing SVAT models over wheat fields , 2002 .

[57]  Yann Kerr,et al.  A disaggregation scheme for soil moisture based on topography and soil depth , 2003 .

[58]  D. Entekhabi,et al.  Land data assimilation and estimation of soil moisture using measurements from the Southern Great Plains 1997 Field Experiment , 2001 .

[59]  Yann Kerr,et al.  Modeling approaches to assimilating L band passive microwave observations over land surfaces , 2002 .