Spectral inequality with sensor sets of decaying density for Schr\"odinger operators with power growth potentials

. We prove a spectral inequality for Shubin-type operators and more general Schrödinger operators with confinement potentials. The sensor sets are allowed to decay exponentially, where the precise allowed decay rate depends on the potential. The proof uses an interpolation inequality derived by Carleman estimates and quantitative weighted L 2 -estimates for functions in the spectral subspace of the operator.

[1]  Albrecht Seelmann,et al.  Uncertainty Principle for Hermite Functions and Null-Controllability with Sensor Sets of Decaying Density , 2022, Journal of Fourier Analysis and Applications.

[2]  Albrecht Seelmann,et al.  Uncertainty principles with error term in Gelfand–Shilov spaces , 2022, Archiv der Mathematik.

[3]  Albrecht Seelmann,et al.  Control problem for quadratic parabolic differential equations with sparse sensor sets of finite volume or anisotropically decaying density , 2022, 2201.02370.

[4]  J'er'emy Martin,et al.  Uncertainty principles in Gelfand-Shilov spaces and null-controllability , 2021, Journal of Functional Analysis.

[5]  P. Alphonse Null-controllability of evolution equations associated with fractional Shubin operators through quantitative Agmon estimates. , 2020, 2012.04374.

[6]  Albrecht Seelmann,et al.  Quantitative unique continuation for spectral subspaces of Schrödinger operators with singular potentials , 2020, Journal of Differential Equations.

[7]  Albrecht Seelmann,et al.  An abstract Logvinenko-Sereda type theorem for spectral subspaces , 2020, 2010.11901.

[8]  Matthias Täufer,et al.  Unique continuation and lifting of spectral band edges of Schrödinger operators on unbounded domains , 2020, Journal of Spectral Theory.

[9]  K. Pravda-Starov,et al.  SPECTRAL INEQUALITIES FOR COMBINATIONS OF HERMITE FUNCTIONS AND NULL-CONTROLLABILITY FOR EVOLUTION EQUATIONS ENJOYING GELFAND–SHILOV SMOOTHING EFFECTS , 2020, Journal of the Institute of Mathematics of Jussieu.

[10]  Christian Seifert,et al.  Sufficient Criteria and Sharp Geometric Conditions for Observability in Banach Spaces , 2019, SIAM J. Control. Optim..

[11]  G. Lebeau,et al.  Spectral Inequalities for the Schrödinger operator , 2019, 1901.03513.

[12]  Ivica Naki'c,et al.  Null-controllability and control cost estimates for the heat equation on unbounded and large bounded domains , 2018, 1810.11229.

[13]  Ivica Naki'c,et al.  Sharp estimates and homogenization of the control cost of the heat equation on large domains , 2018, ESAIM: Control, Optimisation and Calculus of Variations.

[14]  Karine Beauchard,et al.  Spectral estimates for finite combinations of Hermite functions and null-controllability of hypoelliptic quadratic equations , 2018, Studia Mathematica.

[15]  L. Grafakos,et al.  Some Problems in Harmonic Analysis , 2017, 1701.06637.

[16]  Michela Egidi,et al.  Scale-free Unique Continuation Estimates and Logvinenko–Sereda Theorems on the Torus , 2016, Annales Henri Poincaré.

[17]  Ivica Naki'c,et al.  Scale-free unique continuation principle for spectral projectors, eigenvalue-lifting and Wegner estimates for random Schrödinger operators , 2016, 1609.01953.

[18]  Karine Beauchard,et al.  Null-controllability of hypoelliptic quadratic differential equations , 2016, 1603.05367.

[19]  Christian Rose,et al.  A quantitative Carleman estimate for second-order elliptic operators , 2015, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[20]  Constanza Rojas-Molina,et al.  Scale-Free Unique Continuation Estimates and Applications to Random Schrödinger Operators , 2012, 1210.5623.

[21]  Harry Yserentant,et al.  A spectral method for Schrödinger equations with smooth confinement potentials , 2012, Numerische Mathematik.

[22]  K. Schmüdgen Unbounded Self-adjoint Operators on Hilbert Space , 2012 .

[23]  Jérôme Le Rousseau,et al.  On Carleman estimates for elliptic and parabolic operators. Applications to unique continuation and control of parabolic equations , 2012 .

[24]  Marius Tucsnak,et al.  On the null-controllability of diffusion equations , 2011 .

[25]  Luc Miller Unique continuation estimates for sums of semiclassical eigenfunctions and null-controllability from cones , 2008 .

[26]  O. Kovrizhkin Some results related to the Logvinenko-Sereda theorem , 2000, math/0012186.

[27]  Hans L. Cycon,et al.  Schrodinger Operators: With Application to Quantum Mechanics and Global Geometry , 1987 .

[28]  Barry Simon,et al.  Ultracontractivity and the Heat Kernel for Schrijdinger Operators and Dirichlet Laplacians , 1987 .

[29]  Shmuel Agmon,et al.  Lectures on exponential decay of solutions of second order elliptic equations : bounds on eigenfunctions of N-body Schrödinger operators , 1983 .

[30]  E. Davies Jwkb and Related Bounds on Schrödinger Eigenfunctions , 1982 .

[31]  V. È. Kacnel'son EQUIVALENT NORMS IN SPACES OF ENTIRE FUNCTIONS , 1973 .

[32]  E. Lieb,et al.  Inequalities for the Moments of the Eigenvalues of the Schrodinger Hamiltonian and Their Relation to Sobolev Inequalities , 2002 .

[33]  G. Johnson The Schrödinger equation , 1998 .

[34]  G. Lebeau,et al.  Contróle Exact De Léquation De La Chaleur , 1995 .

[35]  R. Carmona,et al.  Pointwise bounds on eigenfunctions and wave packets inN-body quantum systems , 1978 .