Hybrid Modeling and PID-PSO Control of Buck-Boost Chopper

Due to its simplicity, low voltage stress, high reliability, low switch and inductor losses, and small inductor size, the Buck-Boost chopper has attracted a lot of attention in applications where it is necessary to step-up or step-down the DC voltage. In this paper a hybrid model of the Buck- Boost DC-DC converter using the PWA (piecewise affine) modeling framework is proposed, and then a PID controller is designed based on the PWA model. Finally, the particle swarm optimization (PSO) method is used to determine near optimum PID controller parameters. Designing the controller and analyzing the performance of the system based on the non-linear model are very difficult, so we used the PWA as an alternative solution. The proposed piecewise affine hybrid model lets decide about the control strategy and analyze the stability and performance of the closed loop control system using the classical control theory. Extensive simulations show the superiority of the PWA over the small signal linear model in prediction of the system behavior. Streszczenie. W artykule przedstawiono hybrydowy przeksztaltnik DC/DC typu Buck-Boost wykorzystujący modelowanie PWA ) piecewise affine). Wykorzystano algorytm mrowkowy PSO do optymalizacji parametrow. (Hybrydowe modelowanie i sterowanie PID-PSO przeksztaltnikiem Buck- Boost)

[1]  Karl Henrik Johansson Hybrid control systems , 2004 .

[2]  Deepak Jayaraj,et al.  PSO Based Tuning of a PID Controller for a High Performance Drilling Machine , 2010 .

[3]  L.G. Bushnell On the History of Control , 1996, IEEE Control Systems.

[4]  Yun Li,et al.  PID control system analysis, design, and technology , 2005, IEEE Transactions on Control Systems Technology.

[5]  Mahmood Mirzaei,et al.  Hybrid Modeling of the Non-inverting Buck-Boost DC-DC Converter , 2008 .

[6]  Zwe-Lee Gaing,et al.  A particle swarm optimization approach for optimum design of PID controller in AVR system , 2004 .

[7]  Jonathan P. How,et al.  Automated control design for a piecewise-affine approximation of a class of nonlinear systems , 2001, Proceedings of the 2001 American Control Conference. (Cat. No.01CH37148).

[8]  F. Tahami,et al.  Piecewise Affine Large Signal Modeling of PFC Rectifiers , 2007, 2007 IEEE International Symposium on Industrial Electronics.

[9]  Boumediène Allaoua,et al.  Setting Up PID DC Motor Speed Control Alteration Parameters Using Particle Swarm Optimization Strategy , 2009 .

[10]  C. Guzelis,et al.  A canonical representation for piecewise-affine maps and its applications to circuit analysis , 1991 .

[11]  Young-Joo Lee,et al.  A Compensation Technique for Smooth Transitions in a Noninverting Buck–Boost Converter , 2009, IEEE Transactions on Power Electronics.

[12]  Tore Undeland,et al.  Power Electronics: Converters, Applications and Design , 1989 .

[13]  Stuart Bennett,et al.  A History of Control Engineering 1930-1955 , 1993 .

[14]  Alberto Bemporad,et al.  Efficient conversion of mixed logical dynamical systems into an equivalent piecewise affine form , 2004, IEEE Transactions on Automatic Control.

[15]  Jonathan P. How,et al.  Output feedback controller synthesis for piecewise-affine systems with multiple equilibria , 2000, Proceedings of the 2000 American Control Conference. ACC (IEEE Cat. No.00CH36334).