A galerkin symmetric boundary‐element method in elasticity: Formulation and implementation

A “symmetric” boundary element method based on a weighted residual Galerkin approach for elastoplastic analysis is revisited and its computer implementation for two-dimensional homogeneous problems is described.

[1]  C. Polizzotto,et al.  An energy approach to the boundary element method. Part I: elastic solids , 1988 .

[2]  T. A. Cruse,et al.  Elastoplastic BIE analysis of cracked plates and related problems. Part 1: Formulation , 1986 .

[3]  T. Cruse,et al.  Traction BIE formulations and applications to nonplanar and multiple cracks , 1992 .

[4]  O. Zienkiewicz,et al.  The coupling of the finite element method and boundary solution procedures , 1977 .

[5]  P. K. Banerjee,et al.  Boundary element methods in engineering science , 1981 .

[6]  G. Maier,et al.  Extremum, convergence and stability properties of the finite-increment problem in elastic-plastic boundary element analysis , 1992 .

[7]  C. Polizzotto An energy approach to the boundary element method. Part 1 1: elastic-plastic solids , 1988 .

[8]  Huy Duong Bui,et al.  An integral equations method for solving the problem of a plane crack of arbitrary shape , 1977 .

[9]  Hongren Gu,et al.  Finite element solution of a boundary integral equation for mode I embedded three‐dimensional fractures , 1988 .

[10]  Herbert A. Mang,et al.  Discretization Methods in Structural Mechanics , 1990 .

[11]  On elastoplastic analysis by boundary elements , 1983 .

[12]  Subrata Mukherjee,et al.  Boundary element methods in creep and fracture , 1982 .

[13]  C. Katz,et al.  Boundary elements and symmetry , 1985 .

[14]  T. Cruse Boundary Element Analysis in Computational Fracture Mechanics , 1988 .

[15]  Giulio Maier,et al.  Generalized variable finite element modeling and extremum theorems in stepwise holonomic elastoplasticity with internal variables , 1992 .

[16]  M. Denda Formulation of the plastic source method for plane inelastic problems Part 1: Green's functions for plane inelastic deformation , 1988 .

[17]  On bounding post-shakedown quantities by the boundary element method , 1984 .

[18]  A critical discussion on possible variable changes related to elastic-plastic collocation BEM analysis , 1991 .

[19]  On the implementation of the galerkin approach in the boundary element method , 1989 .

[20]  Vladimir Sladek,et al.  Stress analysis by boundary element methods , 1989 .

[21]  Giulio Maier,et al.  Symmetric Formulation of an Indirect Boundary Element Method for Elastic-plastic Analysis and Relevant Extremum Properties , 1988 .

[22]  J. G. Rots,et al.  Fracture Processes in Concrete. Rock and Ceramics , 1991 .

[23]  G. Maier,et al.  On Symmetrization in Boundary Element Elastic and Elastic-Plastic Analysis , 1990 .

[24]  P. K. Banerjee,et al.  Advanced inelastic analysis of solids by the boundary element method , 1989 .

[25]  Giulio Maier,et al.  A Galerkin approach to boundary element elastoplastic analysis , 1987 .

[26]  S. Sirtori General stress analysis method by means of integral equations and boundary elements , 1979 .

[27]  H. D. Bui Some remarks about the formulation of three-dimensional thermoelastoplastic problems by integral equations , 1978 .

[28]  G. Maier,et al.  A variational approach to boundary element elastodynamic analysis and extension to multidomain problems , 1991 .

[29]  J. Whiteman The mathematics of finite elements and applications IV : MAFELAP 1981 , 1986 .

[30]  J. C. Jaeger,et al.  Fundamentals of rock mechanics , 1969 .

[31]  C. Brebbia,et al.  Boundary Element Techniques , 1984 .