Liquid Metal Electrodes for Energy Storage Batteries

The increasing demands for integration of renewable energy into the grid and urgently needed devices for peak shaving and power rating of the grid both call for low-cost and large-scale energy storage technologies. The use of secondary batteries is considered one of the most effective approaches to solving the intermittency of renewables and smoothing the power fluctuations of the grid. In these batteries, the states of the electrode highly affect the performance and manufacturing process of the battery, and therefore leverage the price of the battery. A battery with liquid metal electrodes is easy to scale up and has a low cost and long cycle life. In this progress report, the state-of-the-art overview of liquid metal electrodes (LMEs) in batteries is reviewed, including the LMEs in liquid metal batteries (LMBs) and the liquid sodium electrode in sodium-sulfur (Na–S) and ZEBRA (Na–NiCl2) batteries. Besides the LMEs, the development of electrolytes for LMEs and the challenge of using LMEs in the batteries, and the future prospects of using LMEs are also discussed.

[1]  Wu Xu,et al.  Anodes for Rechargeable Lithium‐Sulfur Batteries , 2015 .

[2]  A. Virkar,et al.  Wetting characteristics of sodium on β″-alumina and on nasicon , 1982 .

[3]  G. Janz,et al.  Molten Salts: Volume 4, Part 3, Bromides and Mixtures; Iodides and mixtures—Electrical conductance, density, viscosity, and surface tension data , 1977 .

[4]  The control of the resistance rise of sodium sulphur cells , 1981 .

[5]  J. L. Sudworth,et al.  The sodium/nickel chloride (ZEBRA) battery , 2001 .

[6]  Donghan Kim,et al.  Sodium‐Ion Batteries , 2013 .

[7]  Hojong Kim,et al.  Calcium–bismuth electrodes for large-scale energy storage (liquid metal batteries) , 2013 .

[8]  S. Matsunaga,et al.  Thermodynamic properties of liquid Na-Pb alloys , 1982 .

[9]  G. Janz,et al.  Corrosion in Molten Salts: An Annotated Bibliography , 1979 .

[10]  T. Doi,et al.  Intercalation and Push‐Out Process with Spinel‐to‐Rocksalt Transition on Mg Insertion into Spinel Oxides in Magnesium Batteries , 2015, Advanced science.

[11]  W. T. Smith,et al.  Miscibility of Liquid Metals with Salts. I. The Sodium-Sodium Halide Systems1 , 1955 .

[12]  Bing-Joe Hwang,et al.  An ultrafast rechargeable aluminium-ion battery , 2015, Nature.

[13]  Jun Jiang,et al.  Nanostructured metal chalcogenides: synthesis, modification, and applications in energy conversion and storage devices. , 2013, Chemical Society reviews.

[14]  Brian L. Spatocco,et al.  Thermodynamic properties of calcium-magnesium alloys determined by emf measurements , 2017 .

[15]  A. Dworkin,et al.  Ionic melts as solvents for electronic conductors , 1961 .

[16]  Sanna Syri,et al.  Electrical energy storage systems: A comparative life cycle cost analysis , 2015 .

[17]  B. Agruss,et al.  The Thermally Regenerative Liquid‐Metal Cell , 1963 .

[18]  P. Masset,et al.  Ionic conductivity measurements of molten iodide-based electrolytes , 2006 .

[19]  S. Schoeffert,et al.  Retained molten salt electrolytes in thermal batteries , 2005 .

[20]  B. Dunn,et al.  Asymmetric behavior of beta″-alumina , 1980 .

[21]  Jun Liu,et al.  A Low Cost, High Energy Density, and Long Cycle Life Potassium–Sulfur Battery for Grid‐Scale Energy Storage , 2015, Advanced materials.

[22]  Brian L. Spatocco,et al.  Determination and modeling of the thermodynamic properties of liquid calcium–antimony alloys , 2012 .

[23]  R. P. Clark,et al.  An Improved Calcium Anode for Thermal Batteries , 1971 .

[24]  Min Yang,et al.  Membranes in Lithium Ion Batteries , 2012, Membranes.

[25]  A. Virkar,et al.  On the deterioration of ß″-alumina ceramics under electrolytic conditions , 1980 .

[26]  Mehdi Hosseinifar,et al.  High temperature versus low temperature Zebra (Na/NiCl2) cell performance , 2012 .

[27]  G. Henriksen,et al.  Lithium-aluminum/iron sulfide batteries , 1994 .

[28]  Michael A. Pope,et al.  Structural Design of Cathodes for Li‐S Batteries , 2015 .

[29]  Haisheng Chen,et al.  Progress in electrical energy storage system: A critical review , 2009 .

[30]  M. Saboungi,et al.  Thermodynamic properties of a quasi‐ionic alloy from electromotive force measurements: The Li–Pb system , 1978 .

[31]  R. Brow,et al.  Designing sealing glasses for solid oxide fuel cells , 2006 .

[32]  M. Bredig,et al.  Miscibility of Metals with Salts in the Molten State. III. The Potassium-Potassium Halide Systems , 1958 .

[33]  G. Janz,et al.  Molten Salts: Volume 5, Part 2. Additional Single and Multi-Component Salt Systems. Electrical Conductance, Density, Viscosity and Surface Tension Data , 1980 .

[34]  R. Huggins,et al.  Thermodynamic Properties of the Intermetallic Systems Lithium‐Antimony and Lithium‐Bismuth , 1978 .

[35]  Carl Edgar Johnson,et al.  Lithium hydride systems: solid-liquid phase equilibria for the ternary lithium hydride-lithium chloride-lithium iodide system , 1966 .

[36]  Lynden A Archer,et al.  Stable lithium electrodeposition in liquid and nanoporous solid electrolytes. , 2014, Nature materials.

[37]  G. Henriksen,et al.  High temperature lithium/sulfide batteries , 1993 .

[38]  M. Bredig MIXTURES OF METALS WITH MOLTEN SALTS , 1963 .

[39]  Hui Yang,et al.  Synthesis and characterization of titanium doped sodium beta″-alumina , 2011 .

[40]  Robert D Weaver,et al.  The Sodium|Tin Liquid‐Metal Cell , 1962 .

[41]  A. West,et al.  Sodium Mobility in the NASICON Series Na1+xZr2-xInx(PO4)3 , 2000 .

[42]  S. Jiao,et al.  A new aluminium-ion battery with high voltage, high safety and low cost. , 2015, Chemical communications.

[43]  S. Park,et al.  Synthesis of beta-alumina powders by microwave heating from solution-derived precipitates , 2005 .

[44]  D. Tao A new model of thermodynamics of liquid mixtures and its application to liquid alloys , 2000 .

[45]  Taku Oshima,et al.  Development of Sodium‐Sulfur Batteries , 2005 .

[46]  Zhenguo Yang,et al.  The effects of temperature on the electrochemical performance of sodium–nickel chloride batteries , 2012 .

[47]  D. Bradwell,et al.  Magnesium-antimony liquid metal battery for stationary energy storage. , 2012, Journal of the American Chemical Society.

[48]  Brian L. Spatocco,et al.  Calcium-based multi-element chemistry for grid-scale electrochemical energy storage , 2016, Nature Communications.

[49]  David M. Reed,et al.  Wetting of sodium on β''-Al2O3/YSZ composites for low temperature planar sodium-metal halide batteries , 2013 .

[50]  Donald R. Sadoway,et al.  Lithium–antimony–lead liquid metal battery for grid-level energy storage , 2014, Nature.

[51]  L. Redey,et al.  Molten salt electrolytes for high-temperature lithium cells , 1989 .

[52]  Ronald A. Guidotti,et al.  Thermally activated ( thermal ) battery technology Part IV. Anode materials , 2008 .

[53]  P. Nicholson,et al.  The relative stability of spray-frozen/freeze-dried β″-Al2O3 powders , 1980 .

[54]  Daniele Mazza,et al.  Conductivity Measurements on Nasicon and Nasicon-modified materials , 1999 .

[55]  J. Songster,et al.  The li-te (lithium-tellurium) system , 1992 .

[56]  Z. Wen,et al.  New glass-ceramic sealants for Na/S battery , 2010 .

[57]  Goo-Dae Kim,et al.  Suitable Glass‐Ceramic Sealant for Planar Solid‐Oxide Fuel Cells , 2004 .

[58]  John B. Goodenough,et al.  Fast Na+-ion transport in skeleton structures , 1976 .

[59]  E. Cairns,et al.  Secondary cells with lithium anodes and immobilized fused-salt electrolytes. [Bi or Te cathodes, LiF--LiCl--LiI paste electrolyte, liquid electrodes, 380° to 485°C, 360 W/lb, 80 Wh/lb] , 1968 .

[60]  Teófilo Rojo,et al.  High temperature sodium batteries: status, challenges and future trends , 2013 .

[61]  B. Dunn,et al.  Electrical Energy Storage for the Grid: A Battery of Choices , 2011, Science.

[62]  Jun Liu,et al.  Electrochemical energy storage for green grid. , 2011, Chemical reviews.

[63]  P. Masset Iodide-based electrolytes: A promising alternative for thermal batteries , 2006 .

[64]  L. Nazar,et al.  Sodium and sodium-ion energy storage batteries , 2012 .

[65]  Christopher M Wolverton,et al.  Electrical energy storage for transportation—approaching the limits of, and going beyond, lithium-ion batteries , 2012 .

[66]  H. Bronstein,et al.  MISCIBILITY OF LIQUID METALS WITH SALTS. IV. THE SODIUM—SODIUM HALIDE SYSTEMS AT HIGH TEMPERATURES1 , 1960 .

[67]  J. Coetzer,et al.  A new high energy density battery system , 1986 .

[68]  F. Neale,et al.  Thermodynamic properties of liquid sodium-caesium alloys , 1982 .

[69]  A. Bhatia,et al.  Concentration fluctuations and thermodynamic properties of some compound forming binary molten systems , 1974 .

[70]  E. Cairns,et al.  GALVANIC CELLS WITH FUSED-SALT ELECTROLYTES. , 1967 .

[71]  Donald R. Sadoway,et al.  Self-healing Li–Bi liquid metal battery for grid-scale energy storage , 2015 .

[72]  Ronald A. Guidotti,et al.  Thermal activated (thermal) battery technology: Part II. Molten salt electrolytes , 2008 .

[73]  Steve W. Martin,et al.  Formation and structure of Na2S + P2S5 amorphous materials prepared by melt-quenching and mechanical milling , 2012 .

[74]  R. Huggins,et al.  Thermodynamic Study of the Lithium‐Tin System , 1981 .

[75]  S. Komornicki,et al.  Synthesis and properties of Nasicon-type materials , 2005 .

[76]  Jeffrey W. Fergus,et al.  Sealants for solid oxide fuel cells , 2005 .

[77]  A. Martucci,et al.  Sol-gel synthesis of Na+ beta-Al2O3 powders , 2004 .

[78]  Shinichi Komaba,et al.  Research development on sodium-ion batteries. , 2014, Chemical reviews.

[79]  Gerbrand Ceder,et al.  Electrode Materials for Rechargeable Sodium‐Ion Batteries: Potential Alternatives to Current Lithium‐Ion Batteries , 2012 .

[80]  Hojong Kim,et al.  Calcium-Antimony Alloys as Electrodes for Liquid Metal Batteries , 2014 .

[81]  M. G. Nicholas,et al.  Diffusion bonding stainless steel to alumina using aluminium interlayers , 1982 .

[82]  H. Maeda,et al.  The production of high-purity aluminum in Japan , 1990 .

[83]  Atsushi Sakuda,et al.  Superionic glass-ceramic electrolytes for room-temperature rechargeable sodium batteries , 2012, Nature Communications.

[84]  Liquan Chen,et al.  Room-temperature stationary sodium-ion batteries for large-scale electric energy storage , 2013 .

[85]  Jun Liu,et al.  Liquid-metal electrode to enable ultra-low temperature sodium–beta alumina batteries for renewable energy storage , 2014, Nature Communications.

[86]  Zhenguo Yang,et al.  Advanced materials for sodium-beta alumina batteries: Status, challenges and perspectives , 2010 .

[87]  Se-Young Choi,et al.  Stable sealing glass for planar solid oxide fuel cell , 2002 .

[88]  Brian L. Spatocco,et al.  Liquid metal batteries: past, present, and future. , 2013, Chemical reviews.

[89]  A. Pelton,et al.  Phase diagrams and thermodynamic properties of the 70 binary alkali halide systems having common ions , 1987 .

[90]  B. Agruss,et al.  The Thermally Regenerative Liquid Metal Concentration Cell , 1967 .

[91]  A. Dworkin,et al.  MISCIBILITY OF METALS WITH SALTS. VI. LITHIUM-LITHIUM HALIDE SYSTEMS1 , 1962 .

[92]  M. Mahapatra,et al.  Glass-based seals for solid oxide fuel and electrolyzer cells - A review , 2010 .