A new mathematical programming approach to optimize wind farm layouts

The optimal placement of turbines in a wind farm is critical to the maximization of power production. In this paper, we develop a new mathematical programming approach for wind farm layout optimization. We use Jensen's wake decay model to represent multi-turbine wake effects. We develop mixed integer linear and quadratic optimization formulations and apply them to several example layout cases in the literature. Compared to previous approaches, our models produce layouts that tend to be more symmetric and that generate slightly more power. Our formulations solve quickly, allowing a decision maker to efficiently explore the impact of different turbine densities in a wind farm.

[1]  Ivan Mustakerov,et al.  Wind turbines type and number choice using combinatorial optimization , 2010 .

[2]  Luciano Castillo,et al.  Unrestricted wind farm layout optimization (UWFLO): Investigating key factors influencing the maximum power generation , 2012 .

[3]  N. Jensen A note on wind generator interaction , 1983 .

[4]  Carlo Poloni,et al.  Optimization of wind turbine positioning in large windfarms by means of a genetic algorithm , 1994 .

[5]  Using a Mixed Integer Programming Tool for Solving the 0-1 Quadratic Knapsack Problem , 2004, INFORMS J. Comput..

[6]  M. Y. Hussaini,et al.  Placement of wind turbines using genetic algorithms , 2005 .

[7]  Andrew Kusiak,et al.  Design of wind farm layout for maximum wind energy capture , 2010 .

[8]  Erin F. MacDonald,et al.  A NEW MODEL FOR WIND FARM LAYOUT OPTIMIZATION WITH LANDOWNER DECISIONS , 2011, DAC 2011.

[9]  E. Pyrgioti,et al.  Optimal placement of wind turbines in a wind park using Monte Carlo simulation , 2008 .

[10]  Pierre-Elouan Réthoré,et al.  Wind Turbine Wake in Atmospheric Turbulence , 2009 .

[11]  E. Erkut The discrete p-dispersion problem , 1990 .

[12]  Panos M. Pardalos,et al.  Handbook of Wind Power Systems , 2013 .

[13]  Jonathan Cagan,et al.  An Extended Pattern Search Approach to Wind Farm Layout Optimization , 2010, DAC 2010.

[14]  F. Glover,et al.  Analyzing and Modeling the Maximum Diversity Problem by Zero‐One Programming* , 1993 .

[15]  Warren P. Adams,et al.  A Tight Linearization and an Algorithm for Zero-One Quadratic Programming Problems , 1986 .

[16]  Javier Serrano González,et al.  Optimization of wind farm turbines layout using an evolutive algorithm , 2010 .

[17]  Rosalind Archer,et al.  Wind Turbine Interference in a Wind Farm Layout Optimization Mixed Integer Linear Programming Model , 2011 .

[18]  Cristina H. Amon,et al.  Wind Farm Layout Optimization Considering Energy Generation and Noise Propagation , 2012, DAC 2012.

[19]  Alain Billionnet,et al.  Different Formulations for Solving the Heaviest K-Subgraph Problem , 2005 .

[20]  Micael Gallego,et al.  A branch and bound algorithm for the maximum diversity problem , 2010, Eur. J. Oper. Res..

[21]  J. Højstrup,et al.  A Simple Model for Cluster Efficiency , 1987 .

[22]  Hou-Sheng Huang,et al.  Distributed Genetic Algorithm for Optimization of Wind Farm Annual Profits , 2007, 2007 International Conference on Intelligent Systems Applications to Power Systems.