Recent advances on simulation and theory of hydrogen storage in metal-organic frameworks and covalent organic frameworks.

This critical review covers the application of computer simulations, including quantum calculations (ab initio and DFT), grand canonical Monte-Carlo simulations, and molecular dynamics simulations, to the burgeoning area of the hydrogen storage by metal-organic frameworks and covalent-organic frameworks. This review begins with an overview of the theoretical methods obtained from previous studies. Then strategies for the improvement of hydrogen storage in the porous materials are discussed in detail. The strategies include appropriate pore size, impregnation, catenation, open metal sites in metal oxide parts and within organic linker parts, doping of alkali elements onto organic linkers, substitution of metal oxide with lighter metals, functionalized organic linkers, and hydrogen spillover (186 references).

[1]  G. Garberoglio,et al.  Adsorption and diffusion of hydrogen and methane in 2D covalent organic frameworks , 2008 .

[2]  Wei Zhou,et al.  Enhanced H2 adsorption in isostructural metal-organic frameworks with open metal sites: strong dependence of the binding strength on metal ions. , 2008, Journal of the American Chemical Society.

[3]  Modeling the Hydrogen Storage Materials with Exposed M2+ Coordination Sites , 2008 .

[4]  E. Reguera,et al.  Hydrogen Storage in Copper Prussian Blue Analogues: Evidence of H2 Coordination to the Copper Atom , 2008 .

[5]  Daqiang Yuan,et al.  Enhancing H2 uptake by "close-packing" alignment of open copper sites in metal-organic frameworks. , 2008, Angewandte Chemie.

[6]  W. Goddard,et al.  High H2 Storage of Hexagonal Metal−Organic Frameworks from First-Principles-Based Grand Canonical Monte Carlo Simulations , 2008 .

[7]  M. Tafipolsky,et al.  An accurate force field model for the strain energy analysis of the covalent organic framework COF-102. , 2008, Journal of the American Chemical Society.

[8]  J. Long,et al.  Hydrogen storage in microporous metal-organic frameworks with exposed metal sites. , 2008, Angewandte Chemie.

[9]  J. Simpson,et al.  Origin of the Exceptional Negative Thermal Expansion in Metal-Organic Framework-5 Zn 4 O(1,4-benzenedicarboxylate) 3 , 2008 .

[10]  L. Broadbelt,et al.  Is catenation beneficial for hydrogen storage in metal-organic frameworks? , 2008, Chemical communications.

[11]  A. Ghoufi,et al.  Quasi-elastic neutron scattering and molecular dynamics study of methane diffusion in metal organic frameworks MIL-47(V) and MIL-53(Cr). , 2008, Angewandte Chemie.

[12]  Omar M. Yaghi,et al.  Reticular synthesis of covalent organic borosilicate frameworks. , 2008, Journal of the American Chemical Society.

[13]  Sang Soo Han,et al.  Covalent organic frameworks as exceptional hydrogen storage materials. , 2008, Journal of the American Chemical Society.

[14]  S. Nguyen,et al.  Ligand-elaboration as a strategy for engendering structural diversity in porous metal-organic framework compounds. , 2008, Chemical communications.

[15]  G. Seifert,et al.  H2 adsorption in metal-organic frameworks: dispersion or electrostatic interactions? , 2008, Chemistry.

[16]  Samuel J. Mugavero,et al.  Tailoring Microporosity in Covalent Organic Frameworks , 2008, Advanced materials.

[17]  D. Sholl,et al.  Testing the accuracy of correlations for multicomponent mass transport of adsorbed gases in metal-organic frameworks: diffusion of H2/CH4 mixtures in CuBTC. , 2008, Langmuir : the ACS journal of surfaces and colloids.

[18]  S. Qiu,et al.  Robust metal-organic framework enforced by triple-framework interpenetration exhibiting high H2 storage density. , 2008, Inorganic chemistry.

[19]  P. Wheatley,et al.  Gas storage in nanoporous materials. , 2008, Angewandte Chemie.

[20]  C. Serre,et al.  Experimental evidence supported by simulations of a very high H2 diffusion in metal organic framework materials. , 2008, Physical review letters.

[21]  J. Hupp,et al.  Alkali metal cation effects on hydrogen uptake and binding in metal-organic frameworks. , 2008, Inorganic chemistry.

[22]  Adriano Zecchina,et al.  Role of exposed metal sites in hydrogen storage in MOFs. , 2008, Journal of the American Chemical Society.

[23]  R. Snurr,et al.  Enhanced Hydrogen Uptake and the Electronic Structure of Lithium-Doped Metal-Organic Frameworks , 2008 .

[24]  E. Klontzas,et al.  Hydrogen Storage in 3D Covalent Organic Frameworks. A Multiscale Theoretical Investigation , 2008 .

[25]  Emmanuel Tylianakis,et al.  Improving hydrogen storage capacity of MOF by functionalization of the organic linker with lithium atoms. , 2008, Nano letters.

[26]  Berend Smit,et al.  Molecular simulation of hydrogen diffusion in interpenetrated metal-organic frameworks. , 2008, Physical chemistry chemical physics : PCCP.

[27]  Dong-Kook Kim,et al.  Efficient hydrogen sorption in 8-connected MOFs based on trinuclear pinwheel motifs. , 2008, Inorganic chemistry.

[28]  H. Noguchi,et al.  Quantum sieving effect of three-dimensional Cu-based organic framework for H2 and D2. , 2008, Journal of the American Chemical Society.

[29]  J. Kang,et al.  Ideal metal-decorated three dimensional covalent organic frameworks for reversible hydrogen storage , 2008 .

[30]  Kunlun Hong,et al.  Surface interactions and quantum kinetic molecular sieving for H2 and D2 adsorption on a mixed metal-organic framework material. , 2008, Journal of the American Chemical Society.

[31]  Rustam Z. Khaliullin,et al.  Interaction of molecular hydrogen with open transition metal centers for enhanced binding in metal-organic frameworks: a computational study. , 2008, Inorganic chemistry.

[32]  George E. Froudakis,et al.  Why Li Doping in MOFs Enhances H2 Storage Capacity? A Multi-scale Theoretical Study , 2008 .

[33]  Daijin Kim,et al.  Density functional study on metal decoration onto a metal-organic framework , 2008 .

[34]  Gustaaf Van Tendeloo,et al.  Ruthenium nanoparticles inside porous [Zn4O(bdc)3] by hydrogenolysis of adsorbed [Ru(cod)(cot)]: a solid-state reference system for surfactant-stabilized ruthenium colloids. , 2008, Journal of the American Chemical Society.

[35]  Christopher Matranga,et al.  Hydrogen Storage Properties of Rigid Three-Dimensional Hofmann Clathrate Derivatives: The Effects of Pore Size , 2008 .

[36]  M. Allendorf,et al.  Force Field Validation for Molecular Dynamics Simulations of IRMOF-1 and Other Isoreticular Zinc Carboxylate Coordination Polymers , 2008 .

[37]  M. Hirscher,et al.  Desorption studies of hydrogen in metal-organic frameworks. , 2008, Angewandte Chemie.

[38]  E. Ganz,et al.  Calculations of Dihydrogen Binding to Doped Carbon Nanostructures , 2008 .

[39]  L. Pan,et al.  Adsorption and diffusion of hydrogen in a new metal-organic framework material: [Zn(bdc)(ted)0.5] , 2008 .

[40]  J. Long,et al.  Matrix isolation chemistry in a porous metal-organic framework: photochemical substitutions of N2 and H2 in Zn4O[(eta6-1,4-benzenedicarboxylate)Cr(CO)3]3. , 2008, Journal of the American Chemical Society.

[41]  R. Ahuja,et al.  Li-decorated metal–organic framework 5: A route to achieving a suitable hydrogen storage medium , 2007, Proceedings of the National Academy of Sciences.

[42]  Randall Q. Snurr,et al.  Design Requirements for Metal-Organic Frameworks as Hydrogen Storage Materials , 2007 .

[43]  R. T. Yang,et al.  Gas adsorption and storage in metal-organic framework MOF-177. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[44]  I. Cabria,et al.  The optimum average nanopore size for hydrogen storage in carbon nanoporous materials , 2007 .

[45]  Omar M Yaghi,et al.  Impact of preparation and handling on the hydrogen storage properties of Zn4O(1,4-benzenedicarboxylate)3 (MOF-5). , 2007, Journal of the American Chemical Society.

[46]  G. Garberoglio,et al.  Computer simulation of the adsorption of light gases in covalent organic frameworks. , 2007, Langmuir : the ACS journal of surfaces and colloids.

[47]  G. Kubas,et al.  Fundamentals of H2 binding and reactivity on transition metals underlying hydrogenase function and H2 production and storage. , 2007, Chemical reviews.

[48]  Omar M Yaghi,et al.  Reticular synthesis of microporous and mesoporous 2D covalent organic frameworks. , 2007, Journal of the American Chemical Society.

[49]  T. Yildirim,et al.  Hydrogen and Methane Adsorption in Metal−Organic Frameworks: A High-Pressure Volumetric Study , 2007 .

[50]  William A. Goddard,et al.  Metal−Organic Frameworks Provide Large Negative Thermal Expansion Behavior , 2007 .

[51]  Yong-Hyun Kim,et al.  Effect of spin state on the dihydrogen binding strength to transition metal centers in metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[52]  Alexander M. Spokoyny,et al.  Synthesis and hydrogen sorption properties of carborane based metal-organic framework materials. , 2007, Journal of the American Chemical Society.

[53]  X. Zeng,et al.  Ab initio study of hydrogen adsorption on benzenoid linkers in metal–organic framework materials , 2007 .

[54]  E. Klontzas,et al.  Molecular Hydrogen Interaction with IRMOF-1: A Multiscale Theoretical Study , 2007 .

[55]  Wei-Qiao Deng,et al.  Improved designs of metal-organic frameworks for hydrogen storage. , 2007, Angewandte Chemie.

[56]  J. Long,et al.  High-enthalpy hydrogen adsorption in cation-exchanged variants of the microporous metal-organic framework Mn3[(Mn4Cl)3(BTT)8(CH3OH)10]2. , 2007, Journal of the American Chemical Society.

[57]  Michael A. Miller,et al.  Independent verification of the saturation hydrogen uptake in MOF-177 and establishment of a benchmark for hydrogen adsorption in metal–organic frameworks , 2007 .

[58]  Hong‐Cai Zhou,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[59]  C. Weng,et al.  Atomistic study of the influences of size, VDW distance and arrangement of carbon nanotubes on hydrogen storage , 2007 .

[60]  Joseph T Hupp,et al.  Chemical reduction of metal-organic framework materials as a method to enhance gas uptake and binding. , 2007, Journal of the American Chemical Society.

[61]  Krista S. Walton,et al.  Applicability of the BET method for determining surface areas of microporous metal-organic frameworks. , 2007, Journal of the American Chemical Society.

[62]  J. Johnson,et al.  Experimental and Theoretical Studies of Gas Adsorption in Cu3(BTC)2: An Effective Activation Procedure , 2007 .

[63]  Krista S. Walton,et al.  Exceptional negative thermal expansion in isoreticular metal-organic frameworks. , 2007, Angewandte Chemie.

[64]  N. Champness,et al.  Hydrogen storage in metal–organic frameworks , 2007 .

[65]  P. Bénard,et al.  Storage of hydrogen by physisorption on carbon and nanostructured materials , 2007 .

[66]  Rochus Schmid,et al.  Ab initio parametrized MM3 force field for the metal‐organic framework MOF‐5 , 2007, J. Comput. Chem..

[67]  Michael O'Keeffe,et al.  Designed Synthesis of 3D Covalent Organic Frameworks , 2007, Science.

[68]  Li Zhang,et al.  Design for hydrogen storage materials via observation of adsorption sites by computer tomography. , 2007, The journal of physical chemistry. B.

[69]  P. Budd,et al.  The potential of organic polymer-based hydrogen storage materials. , 2007, Physical chemistry chemical physics : PCCP.

[70]  Henrietta W. Langmi,et al.  Non-hydride systems of the main group elements as hydrogen storage materials , 2007 .

[71]  R. Snurr,et al.  Recent developments in the molecular modeling of diffusion in nanoporous materials , 2007 .

[72]  Jaheon Kim,et al.  Understanding the mechanism of hydrogen adsorption into metal organic frameworks , 2007 .

[73]  F. Negri,et al.  Tuning the physisorption of molecular hydrogen: binding to aromatic, hetero-aromatic and metal-organic framework materials , 2007 .

[74]  Mircea Dincă,et al.  Observation of Cu2+-H2 interactions in a fully desolvated sodalite-type metal-organic framework. , 2007, Angewandte Chemie.

[75]  R. T. Yang,et al.  Kinetics and Mechanistic Model for Hydrogen Spillover on Bridged Metal−Organic Frameworks , 2007 .

[76]  Omar M. Yaghi,et al.  Metal-organic frameworks: a tale of two entanglements. , 2007, Nature materials.

[77]  A. McGaughey,et al.  Thermal conductivity of metal-organic framework 5 (MOF-5): Part I. Molecular dynamics simulations , 2007 .

[78]  S. Kitagawa,et al.  A flexible interpenetrating coordination framework with a bimodal porous functionality. , 2007, Nature materials.

[79]  Sean Parkin,et al.  Framework-catenation isomerism in metal-organic frameworks and its impact on hydrogen uptake. , 2007, Journal of the American Chemical Society.

[80]  Saeed Amirjalayer,et al.  Molecular dynamics simulation of benzene diffusion in MOF-5: importance of lattice dynamics. , 2007, Angewandte Chemie.

[81]  James R. Morris,et al.  Theoretical investigation of the effect of graphite interlayer spacing on hydrogen absorption , 2007 .

[82]  Jong‐San Chang,et al.  Porous cobalt(II)-organic frameworks with corrugated walls: Structurally robust gas-sorption materials. , 2007, Angewandte Chemie.

[83]  G. McIntyre,et al.  Determination of the hydrogen absorption sites in Zn4O(1,4-benzenedicarboxylate) by single crystal neutron diffraction. , 2006, Chemical communications.

[84]  Gérard Férey,et al.  Hydrogen storage in the giant-pore metal-organic frameworks MIL-100 and MIL-101. , 2006, Angewandte Chemie.

[85]  Craig M. Brown,et al.  Hydrogen storage in a microporous metal-organic framework with exposed Mn2+ coordination sites. , 2006, Journal of the American Chemical Society.

[86]  A. Cheetham,et al.  Adsorption of molecular hydrogen on coordinatively unsaturated Ni(II) sites in a nanoporous hybrid material. , 2006, Journal of the American Chemical Society.

[87]  Jaheon Kim,et al.  Grand canonical Monte Carlo simulation study on the catenation effect on hydrogen adsorption onto the interpenetrating metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[88]  A. J. Blake,et al.  High H2 adsorption by coordination-framework materials. , 2006, Angewandte Chemie.

[89]  Hong-Cai Zhou,et al.  A metal-organic framework with entatic metal centers exhibiting high gas adsorption affinity. , 2006, Journal of the American Chemical Society.

[90]  Chongli Zhong,et al.  Molecular simulation of carbon dioxide/methane/hydrogen mixture adsorption in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[91]  R. T. Yang,et al.  Hydrogen storage in low silica type X zeolites. , 2006, The journal of physical chemistry. B.

[92]  W. Goddard,et al.  Development of the ReaxFF reactive force field for mechanistic studies of catalytic selective oxidation processes on BiMoOx , 2006 .

[93]  Banglin Chen,et al.  Hydrogen adsorption in an interpenetrated dynamic metal-organic framework. , 2006, Inorganic chemistry.

[94]  J. Long,et al.  Microporous metal-organic frameworks incorporating 1,4-benzeneditetrazolate: syntheses, structures, and hydrogen storage properties. , 2006, Journal of the American Chemical Society.

[95]  H. Gornitzka,et al.  New Rh derivatives of s-indacene active in dehydrogenative silylation of styrene , 2006 .

[96]  R. T. Yang,et al.  Hydrogen storage in metal-organic frameworks by bridged hydrogen spillover. , 2006, Journal of the American Chemical Society.

[97]  B. Dunietz,et al.  Hydrogen physisorption on the organic linker in metal organic frameworks: ab initio computational study. , 2006, The journal of physical chemistry. B.

[98]  Randall Q Snurr,et al.  Effects of surface area, free volume, and heat of adsorption on hydrogen uptake in metal-organic frameworks. , 2006, The journal of physical chemistry. B.

[99]  Martin Head-Gordon,et al.  Computational studies of molecular hydrogen binding affinities: the role of dispersion forces, electrostatics, and orbital interactions. , 2006, Physical chemistry chemical physics : PCCP.

[100]  Daofeng Sun,et al.  An interweaving MOF with high hydrogen uptake. , 2006, Journal of the American Chemical Society.

[101]  Henrietta W. Langmi,et al.  Towards polymer-based hydrogen storage materials: engineering ultramicroporous cavities within polymers of intrinsic microporosity. , 2006, Angewandte Chemie.

[102]  Ulrich Müller,et al.  Hydrogen Adsorption in Metal–Organic Frameworks: Cu‐MOFs and Zn‐MOFs Compared , 2006 .

[103]  Omar M Yaghi,et al.  Exceptional H2 saturation uptake in microporous metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[104]  A. V. van Duin,et al.  Multi-paradigm multi-scale simulations for fuel cell catalysts and membranes , 2006 .

[105]  A. V. van Duin,et al.  Dynamics of the dissociation of hydrogen on stepped platinum surfaces using the ReaxFF reactive force field. , 2006, The journal of physical chemistry. B.

[106]  A. Dailly,et al.  Saturation of hydrogen sorption in Zn benzenedicarboxylate and Zn naphthalenedicarboxylate. , 2006, The journal of physical chemistry. B.

[107]  R. T. Yang,et al.  Significantly enhanced hydrogen storage in metal-organic frameworks via spillover. , 2006, Journal of the American Chemical Society.

[108]  Chongli Zhong,et al.  Understanding hydrogen adsorption in metal-organic frameworks with open metal sites: a computational study. , 2006, The journal of physical chemistry. B.

[109]  S. Bhatia,et al.  Optimum conditions for adsorptive storage. , 2006, Langmuir : the ACS journal of surfaces and colloids.

[110]  Omar M Yaghi,et al.  Effects of functionalization, catenation, and variation of the metal oxide and organic linking units on the low-pressure hydrogen adsorption properties of metal-organic frameworks. , 2006, Journal of the American Chemical Society.

[111]  E. Ganz,et al.  New isoreticular metal-organic framework materials for high hydrogen storage capacity. , 2005, The Journal of chemical physics.

[112]  W. Goddard,et al.  Nanopores of carbon nanotubes as practical hydrogen storage media , 2005 .

[113]  Michael O'Keeffe,et al.  Porous, Crystalline, Covalent Organic Frameworks , 2005, Science.

[114]  G. Kearley,et al.  Modelling of hydrogen adsorption in the metal organic framework MOF5 , 2005 .

[115]  J. Atwood,et al.  Organic crystals absorb hydrogen gas under mild conditions. , 2005, Chemical communications.

[116]  M. Nakano,et al.  Synthesis, intermolecular interaction, and semiconductive behavior of a delocalized singlet biradical hydrocarbon. , 2005, Angewandte Chemie.

[117]  Yoshiyuki Kawazoe,et al.  Clustering of Ti on a C60 surface and its effect on hydrogen storage. , 2005, Journal of the American Chemical Society.

[118]  Omar M Yaghi,et al.  Characterization of H2 binding sites in prototypical metal-organic frameworks by inelastic neutron scattering. , 2005, Journal of the American Chemical Society.

[119]  R. Schmid,et al.  Metal@MOF: loading of highly porous coordination polymers host lattices by metal organic chemical vapor deposition. , 2005, Angewandte Chemie.

[120]  William A. Goddard,et al.  The theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. I. The reactive force field ReaxFFHBN development , 2005 .

[121]  A. V. van Duin,et al.  Theoretical study on interaction of hydrogen with single-walled boron nitride nanotubes. II. Collision, storage, and adsorption. , 2005, The Journal of chemical physics.

[122]  K. Lillerud,et al.  Interaction of Hydrogen with MOF-5. , 2005, The journal of physical chemistry. B.

[123]  Tim Mueller,et al.  A density functional theory study of hydrogen adsorption in MOF-5. , 2005, The journal of physical chemistry. B.

[124]  S. Han,et al.  High coverage of hydrogen on a (10,0) single-walled boron nitride nanotube , 2005 .

[125]  Omar M Yaghi,et al.  Gas Adsorption Sites in a Large-Pore Metal-Organic Framework , 2005, Science.

[126]  D. Sholl,et al.  Self-diffusion and transport diffusion of light gases in metal-organic framework materials assessed using molecular dynamics simulations. , 2005, The journal of physical chemistry. B.

[127]  Siegmar Roth,et al.  Hydrogen adsorption in different carbon nanostructures , 2005 .

[128]  J. Tse,et al.  Graphene nanostructures as tunable storage media for molecular hydrogen. , 2005, Proceedings of the National Academy of Sciences of the United States of America.

[129]  Omar M Yaghi,et al.  Strategies for hydrogen storage in metal--organic frameworks. , 2005, Angewandte Chemie.

[130]  T. Yildirim,et al.  Direct observation of hydrogen adsorption sites and nanocage formation in metal-organic frameworks. , 2005, Physical review letters.

[131]  E. Ganz,et al.  Binding energies of hydrogen molecules to isoreticular metal-organic framework materials. , 2005, The Journal of chemical physics.

[132]  J. Johnson,et al.  Adsorption of gases in metal organic materials: comparison of simulations and experiments. , 2005, The journal of physical chemistry. B.

[133]  Jeffrey R. Long,et al.  Strong H2 Binding and Selective Gas Adsorption within the Microporous Coordination Solid Mg3(O2C-C10H6-CO2)3 , 2005 .

[134]  Chongli Zhong,et al.  Molecular simulation of adsorption and diffusion of hydrogen in metal-organic frameworks. , 2005, The journal of physical chemistry. B.

[135]  A. V. van Duin,et al.  Optimization and application of lithium parameters for the reactive force field, ReaxFF. , 2005, The journal of physical chemistry. A.

[136]  J. Long,et al.  Hydrogen storage in the dehydrated prussian blue analogues M3[Co(CN)6]2 (M = Mn, Fe, Co, Ni, Cu, Zn). , 2005, Journal of the American Chemical Society.

[137]  Michael Hirscher,et al.  Hydrogen Physisorption in Metal–Organic Porous Crystals , 2005 .

[138]  A. V. van Duin,et al.  Development of the ReaxFF reactive force field for describing transition metal catalyzed reactions, with application to the initial stages of the catalytic formation of carbon nanotubes. , 2005, The journal of physical chemistry. A.

[139]  M. Eddaoudi,et al.  Rod packings and metal-organic frameworks constructed from rod-shaped secondary building units. , 2005, Journal of the American Chemical Society.

[140]  A. V. van Duin,et al.  ReaxFF(MgH) reactive force field for magnesium hydride systems. , 2005, The journal of physical chemistry. A.

[141]  E. Ganz,et al.  Computational study of hydrogen binding by metal-organic framework-5. , 2004, The Journal of chemical physics.

[142]  M. Côté,et al.  First-principles study of the rotational transitions of H2 physisorbed over benzene. , 2004, The Journal of chemical physics.

[143]  A. Seayad,et al.  Recent Advances in Hydrogen Storage in Metal‐Containing Inorganic Nanostructures and Related Materials , 2004 .

[144]  Xin Xu,et al.  New alkali doped pillared carbon materials designed to achieve practical reversible hydrogen storage for transportation. , 2004, Physical review letters.

[145]  Omar M Yaghi,et al.  Hydrogen sorption in functionalized metal-organic frameworks. , 2004, Journal of the American Chemical Society.

[146]  Wim Klopper,et al.  On the Interaction of Dihydrogen with Aromatic Systems , 2004 .

[147]  X. Gong,et al.  Pressure-driven confinement of hydrogen molecules between graphene sheets in the regime of van der Waals repulsion , 2004 .

[148]  Michael O'Keeffe,et al.  A route to high surface area, porosity and inclusion of large molecules in crystals , 2004, Nature.

[149]  A. V. Duin,et al.  Adhesion and nonwetting-wetting transition in the Al/alpha-Al_2O_3 interface , 2004 .

[150]  S. Han,et al.  ADSORPTION PROPERTIES OF HYDROGEN ON (10, 0) SINGLE-WALLED CARBON NANOTUBE THROUGH DENSITY FUNCTIONAL THEORY , 2004 .

[151]  Wenbin Lin,et al.  Highly interpenetrated metal-organic frameworks for hydrogen storage. , 2004, Angewandte Chemie.

[152]  C. Serre,et al.  Hydrogen adsorption in the nanoporous metal-benzenedicarboxylate M(OH)(O2C-C6H4-CO2) (M = Al3+, Cr3+), MIL-53. , 2003, Chemical communications.

[153]  A. V. van Duin,et al.  Shock waves in high-energy materials: the initial chemical events in nitramine RDX. , 2003, Physical review letters.

[154]  Michael O'Keeffe,et al.  Reticular synthesis and the design of new materials , 2003, Nature.

[155]  Michael O'Keeffe,et al.  Hydrogen Storage in Microporous Metal-Organic Frameworks , 2003, Science.

[156]  A. V. Duin,et al.  ReaxFFSiO Reactive Force Field for Silicon and Silicon Oxide Systems , 2003 .

[157]  A. Cheetham,et al.  Hydrogen adsorption in nanoporous nickel(II) phosphates. , 2003, Journal of the American Chemical Society.

[158]  Gérard Férey,et al.  Very Large Breathing Effect in the First Nanoporous Chromium(III)-Based Solids: MIL-53 or CrIII(OH)·{O2C−C6H4−CO2}·{HO2C−C6H4−CO2H}x·H2Oy , 2002 .

[159]  Hongwei Zhu,et al.  Hydrogen uptake in boron nitride nanotubes at room temperature. , 2002, Journal of the American Chemical Society.

[160]  Tanja van Mourik,et al.  A critical note on density functional theory studies on rare-gas dimers , 2002 .

[161]  J. Marrot,et al.  A breathing hybrid organic-inorganic solid with very large pores and high magnetic characteristics. , 2002, Angewandte Chemie.

[162]  Michael O'Keeffe,et al.  Systematic Design of Pore Size and Functionality in Isoreticular MOFs and Their Application in Methane Storage , 2002, Science.

[163]  A. Züttel,et al.  Hydrogen-storage materials for mobile applications , 2001, Nature.

[164]  A. V. Duin,et al.  ReaxFF: A Reactive Force Field for Hydrocarbons , 2001 .

[165]  Bin Chen,et al.  Interwoven Metal-Organic Framework on a Periodic Minimal Surface with Extra-Large Pores , 2001, Science.

[166]  P. Downes,et al.  Hydrogen storage in sonicated carbon materials , 2001 .

[167]  S. Barlow,et al.  Ligand-centered oxidation in a diiron s-indacene complex , 2000 .

[168]  Mohamed Eddaoudi,et al.  Highly Porous and Stable Metal−Organic Frameworks: Structure Design and Sorption Properties , 2000 .

[169]  M. O'keeffe,et al.  Design and synthesis of an exceptionally stable and highly porous metal-organic framework , 1999, Nature.

[170]  J. Ogden PROSPECTS FOR BUILDING A HYDROGEN ENERGY INFRASTRUCTURE , 1999 .

[171]  S. Sircar Gibbsian Surface Excess for Gas AdsorptionRevisited , 1999 .

[172]  Ian D. Williams,et al.  A chemically functionalizable nanoporous material (Cu3(TMA)2(H2O)3)n , 1999 .

[173]  D. Lévesque,et al.  Monte Carlo simulations of hydrogen adsorption in single-walled carbon nanotubes , 1998 .

[174]  Holger Patzelt,et al.  RI-MP2: optimized auxiliary basis sets and demonstration of efficiency , 1998 .

[175]  T. Groy,et al.  Establishing Microporosity in Open Metal−Organic Frameworks: Gas Sorption Isotherms for Zn(BDC) (BDC = 1,4-Benzenedicarboxylate) , 1998 .

[176]  A. Louis,et al.  Metallization of fluid hydrogen , 1997, Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences.

[177]  Siegfried Schmauder,et al.  Comput. Mater. Sci. , 1998 .

[178]  F. Weigend,et al.  RI-MP2: first derivatives and global consistency , 1997 .

[179]  A. Neimark,et al.  Calibration of Pore Volume in Adsorption Experiments and Theoretical Models , 1997 .

[180]  Comparison of molecular simulation of adsorption with experiment , 1997 .

[181]  D. Bethune,et al.  Storage of hydrogen in single-walled carbon nanotubes , 1997, Nature.

[182]  K. Burke,et al.  Generalized Gradient Approximation Made Simple [Phys. Rev. Lett. 77, 3865 (1996)] , 1997 .

[183]  S. Barlow,et al.  New strongly coupled dinuclear metal centres in organometallic s-indacene complexes , 1997 .

[184]  W. L. Jorgensen,et al.  Development and Testing of the OPLS All-Atom Force Field on Conformational Energetics and Properties of Organic Liquids , 1996 .

[185]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[186]  N. L. Jones,et al.  Structural and Physical Properties of Delocalized Mixed-Valent [Cp*M(pentalene)M'Cp*]n+ and [Cp*M(indacene)M'Cp*]n+ (M, M' = Fe, Co, Ni; n = 0, 1, 2) Complexes , 1995 .

[187]  Peter Pulay,et al.  CAN (SEMI) LOCAL DENSITY FUNCTIONAL THEORY ACCOUNT FOR THE LONDON DISPERSION FORCES , 1994 .

[188]  V. Buch,et al.  Path integral simulations of mixed para‐D2 and ortho‐D2 clusters: The orientational effects , 1994 .

[189]  A. Schäfer,et al.  Fully optimized contracted Gaussian basis sets of triple zeta valence quality for atoms Li to Kr , 1994 .

[190]  W. Goddard,et al.  UFF, a full periodic table force field for molecular mechanics and molecular dynamics simulations , 1992 .

[191]  S. L. Mayo,et al.  DREIDING: A generic force field for molecular simulations , 1990 .

[192]  Norman L. Allinger,et al.  Molecular mechanics. The MM3 force field for hydrocarbons. 1 , 1989 .

[193]  Hans W. Horn,et al.  ELECTRONIC STRUCTURE CALCULATIONS ON WORKSTATION COMPUTERS: THE PROGRAM SYSTEM TURBOMOLE , 1989 .

[194]  T. H. Dunning Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen , 1989 .

[195]  L. Manceron,et al.  Infrared spectra and structures of lithium-benzene and lithium-dibenzene complexes in solid argon , 1988 .

[196]  J. Dunitz,et al.  Equilibrium Structure, Stabilized Transition State, or Disorder in the Crystal? Studies of the Antiaromatic Systems Tetra-tert-butyl-s-indacene and Tetra-tert-butylcyclobutadiene by Low-Temperature Crystal Structure Analysis† , 1988 .

[197]  D. Osguthorpe,et al.  Structure and energetics of ligand binding to proteins: Escherichia coli dihydrofolate reductase‐trimethoprim, a drug‐receptor system , 1988, Proteins.

[198]  Martin Head-Gordon,et al.  Quadratic configuration interaction. A general technique for determining electron correlation energies , 1987 .

[199]  J. C. Smart,et al.  Synthesis and characterization of as- and s-indacene bridging ligands and their trimethyltin and manganese tricarbonyl derivatives , 1987 .

[200]  B. Stowasser,et al.  Synthesis and Properties of 1,3,5,7‐Tetra‐tert‐butyl‐s‐indacene , 1986 .

[201]  S. H. Vosko,et al.  Accurate spin-dependent electron liquid correlation energies for local spin density calculations: a critical analysis , 1980 .

[202]  G. Stucky,et al.  Unsaturated organometallic compounds of the main group elements. Isolation and structural properties of bis[(tetramethylethylenediamine)lithium(I)] anthracenide , 1975 .

[203]  J. J. Brooks,et al.  .pi.-Groups in ion pair bonding. Stabilization of the dianion of naphthalene by lithium tetramethylethylenediamine , 1972 .

[204]  M. Boudart,et al.  Surface Diffusion of Hydrogen on Carbon , 1964 .

[205]  C. A. T. Seldam,et al.  Virial coefficients of hydrogen and deuterium at temperatures between −175°C and +150°C. Conclusions from the second virial coefficient with regards to the intermolecular potential , 1960 .

[206]  N. Metropolis,et al.  Equation of State Calculations by Fast Computing Machines , 1953, Resonance.

[207]  R. Feynman,et al.  Space-Time Approach to Non-Relativistic Quantum Mechanics , 1948 .

[208]  M. Plesset,et al.  Note on an Approximation Treatment for Many-Electron Systems , 1934 .