Permutations Restricted by Two Distinct Patterns of Length Three
暂无分享,去创建一个
[1] Zvezdelina Stankova,et al. Forbidden subsequences , 1994, Discret. Math..
[2] Toufik Mansour,et al. Restricted Permutations, Continued Fractions, and Chebyshev Polynomials , 2000, Electron. J. Comb..
[3] Miklós Bóna,et al. The Permutation Classes Equinumerous to the Smooth Class , 1998, Electron. J. Comb..
[4] Miklós Bóna. Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.
[5] Robert G. Rieper,et al. Continued Fractions and Catalan Problems , 2000, Electron. J. Comb..
[6] Mike D. Atkinson,et al. Restricted permutations , 1999, Discret. Math..
[7] Aaron Robertson. Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..
[8] Julian West,et al. Sorting Twice Through a Stack , 1993, Theor. Comput. Sci..
[9] Alberto Del Lungo,et al. Permutations avoiding an increasing number of length-increasing forbidden subsequences , 2000, Discret. Math. Theor. Comput. Sci..
[10] Toufik Mansour. Permutations avoiding a pattern from Sk and at least two patterns from S3 , 2002, Ars Comb..
[11] Alberto Del Lungo,et al. From Motzkin to Catalan permutations , 2000, Discret. Math..
[12] Julian West,et al. Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .
[13] Doron Zeilberger,et al. Permutation Patterns and Continued Fractions , 1999, Electron. J. Comb..
[14] Olivier Guibert. Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .
[15] T. Mansour,et al. Restricted permutations and Chebyshev polynomials. , 2002 .
[16] D. Zeilberger,et al. The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.
[17] Darla Kremer. Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..
[18] Miklós Bóna,et al. Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..
[19] David Thomas,et al. The Art in Computer Programming , 2001 .
[20] Eugène Catalan. Addition à la note sur une équation aux différences finies, insérée dans le volume précédent, page 508 , 1839 .
[21] Miklós Bóna. Permutations with one or two 132-subsequences , 1998, Discret. Math..
[22] Eugène Catalan,et al. Note sur une équation aux différences finies , 2022 .
[23] Ira M. Gessel,et al. Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.
[24] T. Mansour,et al. Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..
[25] Julian West,et al. Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..
[26] John Noonan. The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..