Permutations Restricted by Two Distinct Patterns of Length Three

Define S"n(R;T) to be the set of permutations on n letters which avoid all patterns in the set R and contain each pattern in the multiset T exactly once. In this paper we enumerate S"n(@a;@b) and S"n(@A;{@a,@b}) for all @a @[email protected]?S"3.

[1]  Zvezdelina Stankova,et al.  Forbidden subsequences , 1994, Discret. Math..

[2]  Toufik Mansour,et al.  Restricted Permutations, Continued Fractions, and Chebyshev Polynomials , 2000, Electron. J. Comb..

[3]  Miklós Bóna,et al.  The Permutation Classes Equinumerous to the Smooth Class , 1998, Electron. J. Comb..

[4]  Miklós Bóna Exact Enumeration of 1342-Avoiding Permutations: A Close Link with Labeled Trees and Planar Maps , 1997, J. Comb. Theory, Ser. A.

[5]  Robert G. Rieper,et al.  Continued Fractions and Catalan Problems , 2000, Electron. J. Comb..

[6]  Mike D. Atkinson,et al.  Restricted permutations , 1999, Discret. Math..

[7]  Aaron Robertson Permutations Containing and Avoiding 123 and 132 Patterns , 1999, Discret. Math. Theor. Comput. Sci..

[8]  Julian West,et al.  Sorting Twice Through a Stack , 1993, Theor. Comput. Sci..

[9]  Alberto Del Lungo,et al.  Permutations avoiding an increasing number of length-increasing forbidden subsequences , 2000, Discret. Math. Theor. Comput. Sci..

[10]  Toufik Mansour Permutations avoiding a pattern from Sk and at least two patterns from S3 , 2002, Ars Comb..

[11]  Alberto Del Lungo,et al.  From Motzkin to Catalan permutations , 2000, Discret. Math..

[12]  Julian West,et al.  Permutations with forbidden subsequences, and, stack-sortable permutations , 1990 .

[13]  Doron Zeilberger,et al.  Permutation Patterns and Continued Fractions , 1999, Electron. J. Comb..

[14]  Olivier Guibert Combinatoire des permutations à motifs exclus en liaison avec mots, cartes planaires et tableaux de Young , 1995 .

[15]  T. Mansour,et al.  Restricted permutations and Chebyshev polynomials. , 2002 .

[16]  D. Zeilberger,et al.  The Enumeration of Permutations with a Prescribed Number of “Forbidden” Patterns , 1996, math/9808080.

[17]  Darla Kremer Permutations with forbidden subsequences and a generalized Schro"der number , 2000, Discret. Math..

[18]  Miklós Bóna,et al.  Permutations avoiding certain patterns: The case of length 4 and some generalizations , 1997, Discret. Math..

[19]  David Thomas,et al.  The Art in Computer Programming , 2001 .

[20]  Eugène Catalan Addition à la note sur une équation aux différences finies, insérée dans le volume précédent, page 508 , 1839 .

[21]  Miklós Bóna Permutations with one or two 132-subsequences , 1998, Discret. Math..

[22]  Eugène Catalan,et al.  Note sur une équation aux différences finies , 2022 .

[23]  Ira M. Gessel,et al.  Symmetric functions and P-recursiveness , 1990, J. Comb. Theory, Ser. A.

[24]  T. Mansour,et al.  Restricted 132-Avoiding Permutations , 2000, Adv. Appl. Math..

[25]  Julian West,et al.  Forbidden subsequences and Chebyshev polynomials , 1999, Discret. Math..

[26]  John Noonan The number of permutations containing exactly one increasing subsequence of length three , 1996, Discret. Math..