Coherent spin control of a nanocavity-enhanced qubit in diamond

A central aim of quantum information processing is the efficient entanglement of multiple stationary quantum memories via photons. Among solid-state systems, the nitrogen-vacancy centre in diamond has emerged as an excellent optically addressable memory with second-scale electron spin coherence times. Recently, quantum entanglement and teleportation have been shown between two nitrogen-vacancy memories, but scaling to larger networks requires more efficient spin-photon interfaces such as optical resonators. Here we report such nitrogen-vacancy-nanocavity systems in the strong Purcell regime with optical quality factors approaching 10,000 and electron spin coherence times exceeding 200 μs using a silicon hard-mask fabrication process. This spin-photon interface is integrated with on-chip microwave striplines for coherent spin control, providing an efficient quantum memory for quantum networks.

[1]  F. Jelezko,et al.  Low temperature studies of the excited-state structure of negatively charged nitrogen-vacancy color centers in diamond. , 2009, Physical review letters.

[2]  M. Lukin,et al.  Fault-tolerant quantum communication based on solid-state photon emitters. , 2004, Physical review letters.

[3]  Richard M. Osgood,et al.  Reactive ion etching: Optimized diamond membrane fabrication for transmission electron microscopy , 2013 .

[4]  Simon J. Devitt,et al.  Photonic Architecture for Scalable Quantum Information Processing in Diamond , 2013, 1309.4277.

[5]  Hong-Quan Zhao,et al.  Suppression of fluorescence phonon sideband from nitrogen vacancy centers in diamond nanocrystals by substrate effect. , 2012, Optics express.

[6]  R. N. Schouten,et al.  Unconditional quantum teleportation between distant solid-state quantum bits , 2014, Science.

[7]  C. Santori,et al.  Coupling of nitrogen-vacancy centers to photonic crystal resonators in monocrystalline diamond , 2012, 2012 Conference on Lasers and Electro-Optics (CLEO).

[8]  A. Tartakovskii Route to indistinguishable photons , 2014, Nature Photonics.

[9]  D. D. Awschalom,et al.  A cavity-mediated quantum CPHASE gate between NV spin qubits in diamond , 2014, 1402.6351.

[10]  H. J. Kimble,et al.  The quantum internet , 2008, Nature.

[11]  K. Vahala,et al.  A picogram- and nanometre-scale photonic-crystal optomechanical cavity , 2008, Nature.

[12]  Neil B. Manson,et al.  The nitrogen-vacancy colour centre in diamond , 2013, 1302.3288.

[13]  Edo Waks,et al.  A quantum logic gate between a solid-state quantum bit and a photon , 2013 .

[14]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[15]  Yoshihisa Yamamoto,et al.  Single-photon Devices and Applications , 2010 .

[16]  J. Cirac,et al.  Quantum State Transfer and Entanglement Distribution among Distant Nodes in a Quantum Network , 1996, quant-ph/9611017.

[17]  Oliver Benson,et al.  Assembly of hybrid photonic architectures from nanophotonic constituents , 2011, Nature.

[18]  Thomas L. Reinecke,et al.  Quantum control of a spin qubit coupled to a photonic crystal cavity , 2013 .

[19]  C. Trautmann,et al.  Room-temperature entanglement between single defect spins in diamond , 2012, 1212.2804.

[20]  J. D. Thompson,et al.  Nanophotonic quantum phase switch with a single atom , 2014, Nature.

[21]  Oskar Painter,et al.  Highly efficient coupling from an optical fiber to a nanoscale silicon optomechanical cavity , 2013, 1309.1181.

[22]  Andrew G. Glen,et al.  APPL , 2001 .

[23]  Matthias Steiner,et al.  Single-Shot Readout of a Single Nuclear Spin , 2010, Science.

[24]  Dirk Englund,et al.  Long-lived NV− spin coherence in high-purity diamond membranes , 2012 .

[25]  M. Markham,et al.  Coherent optical transitions in implanted nitrogen vacancy centers. , 2014, Nano letters.

[26]  Dirk Englund,et al.  Deterministic coupling of a single nitrogen vacancy center to a photonic crystal cavity. , 2010, Nano letters.

[27]  M. Doherty,et al.  All-optical thermometry and thermal properties of the optically detected spin resonances of the NV(-) center in nanodiamond. , 2014, Nano letters.

[28]  D Budker,et al.  Solid-state electronic spin coherence time approaching one second , 2012, Nature Communications.

[29]  Andrei Faraon,et al.  Coupling of nitrogen-vacancy centers to photonic crystal cavities in monocrystalline diamond. , 2012, Physical review letters.

[30]  C. Simon,et al.  Raman quantum memory based on an ensemble of nitrogen-vacancy centers coupled to a microcavity , 2013, 2014 Conference on Lasers and Electro-Optics (CLEO) - Laser Science to Photonic Applications.

[31]  D. D. Awschalom,et al.  Room-temperature manipulation and decoherence of a single spin in diamond , 2006, quant-ph/0608233.

[32]  T. Asano,et al.  Spontaneous-emission control by photonic crystals and nanocavities , 2007 .

[33]  D. Awschalom,et al.  Quantum Spintronics: Engineering and Manipulating Atom-Like Spins in Semiconductors , 2013, Science.

[34]  Michal Lipson,et al.  An exercise in self control , 2007 .

[35]  J. Rarity,et al.  Photonic quantum technologies , 2009, 1003.3928.

[36]  S. Gsell,et al.  Deterministic coupling of a single silicon-vacancy color center to a photonic crystal cavity in diamond. , 2014, Nano letters.

[37]  Zach DeVito,et al.  Opt , 2017 .

[38]  Christoph Pauly,et al.  One- and two-dimensional photonic crystal microcavities in single crystal diamond. , 2011, Nature nanotechnology.

[39]  Hyatt M. Gibbs,et al.  Scanning a photonic crystal slab nanocavity by condensation of xenon , 2005 .

[40]  Oskar Painter,et al.  Optical fiber taper coupling and high-resolution wavelength tuning of microdisk resonators at cryogenic temperatures , 2007 .

[41]  Oliver Benson,et al.  Measurement of the ultrafast spectral diffusion of the optical transition of nitrogen vacancy centers in nano-size diamond using correlation interferometry. , 2013, Physical review letters.

[42]  Jeremy L O'Brien,et al.  Cavity enhanced spin measurement of the ground state spin of an NV center in diamond , 2009 .

[43]  M. Markham,et al.  Heralded entanglement between solid-state qubits separated by three metres , 2012, Nature.

[44]  Michal Lipson,et al.  Scalable Integration of Long-Lived Quantum Memories into a Photonic Circuit , 2014, Physical Review X.

[45]  D. Englund,et al.  Fabrication of triangular nanobeam waveguide networks in bulk diamond using single-crystal silicon hard masks , 2014, 1411.3639.

[46]  M. Markham,et al.  Coupling of NV centers to photonic crystal nanobeams in diamond. , 2013, Nano letters.

[47]  Andrew D Greentree,et al.  Towards a picosecond transform-limited nitrogen-vacancy based single photon source. , 2007, Optics express.