Machine Learning Small Molecule Properties in Drug Discovery

Machine learning (ML) is a promising approach for predicting small molecule properties in drug discovery. Here, we provide a comprehensive overview of various ML methods introduced for this purpose in recent years. We review a wide range of properties, including binding affinities, solubility, and ADMET (Absorption, Distribution, Metabolism, Excretion, and Toxicity). We discuss existing popular datasets and molecular descriptors and embeddings, such as chemical fingerprints and graph-based neural networks. We highlight also challenges of predicting and optimizing multiple properties during hit-to-lead and lead optimization stages of drug discovery and explore briefly possible multi-objective optimization techniques that can be used to balance diverse properties while optimizing lead candidates. Finally, techniques to provide an understanding of model predictions, especially for critical decision-making in drug discovery are assessed. Overall, this review provides insights into the landscape of ML models for small molecule property predictions in drug discovery. So far, there are multiple diverse approaches, but their performances are often comparable. Neural networks, while more flexible, do not always outperform simpler models. This shows that the availability of high-quality training data remains crucial for training accurate models and there is a need for standardized benchmarks, additional performance metrics, and best practices to enable richer comparisons between the different techniques and models that can shed a better light on the differences between the many techniques.

[1]  Yubing Si,et al.  Water Network-Augmented Two-State Model for Protein-Ligand Binding Affinity Prediction , 2023, J. Chem. Inf. Model..

[2]  Fabian J Theis,et al.  MISATO - Machine learning dataset of protein-ligand complexes for structure-based drug discovery , 2023, bioRxiv.

[3]  S. Moro,et al.  Past, Present, and Future Perspectives on Computer-Aided Drug Design Methodologies , 2023, Molecules.

[4]  Weihua Li,et al.  In silico prediction of hERG blockers using machine learning and deep learning approaches. , 2023, Journal of applied toxicology : JAT.

[5]  Fengfei Wang,et al.  Neural networks prediction of the protein-ligand binding affinity with circular fingerprints , 2023, Technology and health care : official journal of the European Society for Engineering and Medicine.

[6]  Matthew P. Repasky,et al.  Epik: pKa and Protonation State Prediction through Machine Learning. , 2023, Journal of chemical theory and computation.

[7]  W. S. Hopkins,et al.  Using Machine Learning To Predict Partition Coefficient (Log P) and Distribution Coefficient (Log D) with Molecular Descriptors and Liquid Chromatography Retention Time , 2023, J. Chem. Inf. Model..

[8]  B. Li,et al.  Prediction of ADMET Properties of Anti-Breast Cancer Compounds Using Three Machine Learning Algorithms , 2023, Molecules.

[9]  Huanxiang Liu,et al.  Can molecular dynamics simulations improve predictions of protein-ligand binding affinity with machine learning? , 2023, Briefings Bioinform..

[10]  Ran Liu,et al.  Persistent Path-Spectral (PPS) Based Machine Learning for Protein-Ligand Binding Affinity Prediction , 2023, J. Chem. Inf. Model..

[11]  O. Isayev,et al.  Active Learning Guided Drug Design Lead Optimization Based on Relative Binding Free Energy Modeling , 2023, J. Chem. Inf. Model..

[12]  Xiangrui Cai,et al.  Contrastive Meta-Learning for Drug-Target Binding Affinity Prediction , 2022, 2022 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[13]  Chang-Yu Hsieh,et al.  MF-SuP-pKa: Multi-fidelity modeling with subgraph pooling mechanism for pKa prediction , 2022, Acta pharmaceutica Sinica. B.

[14]  Benjamin A. Shoemaker,et al.  PubChem 2023 update , 2022, Nucleic Acids Res..

[15]  D. Mobley,et al.  An overview of the SAMPL8 host–guest binding challenge , 2022, Journal of Computer-Aided Molecular Design.

[16]  Connor W. Coley,et al.  Artificial intelligence foundation for therapeutic science , 2022, Nature Chemical Biology.

[17]  Agastya P. Bhati,et al.  PLAS-5k: Dataset of Protein-Ligand Affinities from Molecular Dynamics for Machine Learning Applications , 2022, Scientific Data.

[18]  T. Yamane,et al.  3D-RISM-AI: A Machine Learning Approach to Predict Protein–Ligand Binding Affinity Using 3D-RISM , 2022, The journal of physical chemistry. B.

[19]  A. Cheng,et al.  Exploring Deep Learning of Quantum Chemical Properties for Absorption, Distribution, Metabolism, and Excretion Predictions , 2022, J. Chem. Inf. Model..

[20]  K. Héberger,et al.  Comparison of Descriptor- and Fingerprint Sets in Machine Learning Models for ADME-Tox Targets , 2022, Frontiers in Chemistry.

[21]  K. Fujimoto,et al.  Machine-Learning- and Knowledge-Based Scoring Functions Incorporating Ligand and Protein Fingerprints , 2022, ACS omega.

[22]  Travis J. Wheeler,et al.  Drugsniffer: An Open Source Workflow for Virtually Screening Billions of Molecules for Binding Affinity to Protein Targets , 2022, Frontiers in Pharmacology.

[23]  Benedict W J Irwin,et al.  Prediction of In Vivo Pharmacokinetic Parameters and Time-Exposure Curves in Rats Using Machine Learning from the Chemical Structure. , 2022, Molecular pharmaceutics.

[24]  Zhi-Je Li,et al.  ADME prediction for Breast Cancer Drugs in Computer-Aided Drug Design , 2022, IEEA.

[25]  George Karypis,et al.  Benchmarking Accuracy and Generalizability of Four Graph Neural Networks Using Large In Vitro ADME Datasets from Different Chemical Spaces , 2021, Molecular informatics.

[26]  Shengying Qin,et al.  Cytochrome P450 Enzymes and Drug Metabolism in Humans , 2021, International journal of molecular sciences.

[27]  Binju Wang,et al.  Prediction of Binding Free Energy of Protein–Ligand Complexes with a Hybrid Molecular Mechanics/Generalized Born Surface Area and Machine Learning Method , 2021, ACS omega.

[28]  A. Bender,et al.  Machine Learning Models for Human In Vivo Pharmacokinetic Parameters with In-House Validation. , 2021, Molecular pharmaceutics.

[29]  D. D. Wang,et al.  Structure-based protein–ligand interaction fingerprints for binding affinity prediction , 2021, Computational and structural biotechnology journal.

[30]  Jing Huang,et al.  Protein-ligand binding affinity prediction model based on graph attention network. , 2021, Mathematical biosciences and engineering : MBE.

[31]  Feisheng Zhong,et al.  Multi-instance learning of graph neural networks for aqueous pKa prediction , 2021, Bioinform..

[32]  S. Jang,et al.  DFT-Machine Learning Approach for Accurate Prediction of pKa. , 2021, The journal of physical chemistry. A.

[33]  Geemi P Wellawatte,et al.  Model agnostic generation of counterfactual explanations for molecules , 2021, Chemical science.

[34]  Jijun Tang,et al.  DeepFusionDTA: Drug-Target Binding Affinity Prediction With Information Fusion and Hybrid Deep-Learning Ensemble Model , 2021, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[35]  Suresh Dara,et al.  Machine Learning in Drug Discovery: A Review , 2021, Artificial Intelligence Review.

[36]  John Z. H. Zhang,et al.  MolGpka: A Web Server for Small Molecule pKa Prediction Using a Graph-Convolutional Neural Network , 2021, J. Chem. Inf. Model..

[37]  Vishal B. Siramshetty,et al.  Validating ADME QSAR Models Using Marketed Drugs , 2021, SLAS discovery : advancing life sciences R & D.

[38]  M. H. Karimi-Jafari,et al.  ET‐score: Improving Protein‐ligand Binding Affinity Prediction Based on Distance‐weighted Interatomic Contact Features Using Extremely Randomized Trees Algorithm , 2021, Molecular informatics.

[39]  David F. Hahn,et al.  Best practices for constructing, preparing, and evaluating protein-ligand binding affinity benchmarks [Article v0.1]. , 2021, Living journal of computational molecular science.

[40]  Kelin Xia,et al.  Forman persistent Ricci curvature (FPRC)-based machine learning models for protein-ligand binding affinity prediction , 2021, Briefings Bioinform..

[41]  Kelin Xia,et al.  Persistent spectral–based machine learning (PerSpect ML) for protein-ligand binding affinity prediction , 2021, Science Advances.

[42]  Sanghyun Park,et al.  Binding affinity prediction for protein–ligand complex using deep attention mechanism based on intermolecular interactions , 2021, BMC Bioinformatics.

[43]  Debby Dan Wang,et al.  Proteo-chemometrics interaction fingerprints of protein-ligand complexes predict binding affinity , 2021, Bioinform..

[44]  I. Sohn,et al.  Prediction of drug–target binding affinity using similarity-based convolutional neural network , 2021, Scientific Reports.

[45]  Jimeng Sun,et al.  Therapeutics Data Commons: Machine Learning Datasets and Tasks for Drug Discovery and Development , 2021, NeurIPS Datasets and Benchmarks.

[46]  Y. Kosugi,et al.  Prediction of Oral Pharmacokinetics Using a Combination of In Silico Descriptors and In Vitro ADME Properties. , 2021, Molecular pharmaceutics.

[47]  Dapeng Oliver Wu,et al.  Deep Learning in Drug Design: Protein-Ligand Binding Affinity Prediction , 2020, IEEE/ACM Transactions on Computational Biology and Bioinformatics.

[48]  G. Morris,et al.  Learning protein-ligand binding affinity with atomic environment vectors , 2020, Journal of Cheminformatics.

[49]  Xavier Barril,et al.  Extended connectivity interaction features: improving binding affinity prediction through chemical description , 2020, Bioinform..

[50]  W. Nau,et al.  Real-Time Parallel Artificial Membrane Permeability Assay Based on Supramolecular Fluorescent Artificial Receptors , 2020, Frontiers in Chemistry.

[51]  Mi-hyun Kim,et al.  SMPLIP-Score: predicting ligand binding affinity from simple and interpretable on-the-fly interaction fingerprint pattern descriptors , 2020, Journal of Cheminformatics.

[52]  Xiaomin Luo,et al.  Pushing the boundaries of molecular representation for drug discovery with graph attention mechanism. , 2020, Journal of medicinal chemistry.

[53]  Wei-Yin Loh,et al.  Classification and regression trees , 2011, WIREs Data Mining Knowl. Discov..

[54]  R. Wade,et al.  RASPD+: Fast Protein-Ligand Binding Free Energy Prediction Using Simplified Physicochemical Features , 2020, Frontiers in Molecular Biosciences.

[55]  Shinichi Nakajima,et al.  Higher-Order Explanations of Graph Neural Networks via Relevant Walks , 2020, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[56]  Y. Kosugi,et al.  Direct Comparison of Total Clearance Prediction: Computational Machine Learning Model versus Bottom-up Approach Using In Vitro Assay. , 2020, Molecular pharmaceutics.

[57]  Renxiao Wang,et al.  Prediction of the Favorable Hydration Sites in a Protein Binding Pocket and Its Application to Scoring Function Formulation , 2020, J. Chem. Inf. Model..

[58]  Christophe Molina,et al.  ADME Prediction with KNIME: Development and Validation of a Publicly Available Workflow for the Prediction of Human Oral Bioavailability , 2020, J. Chem. Inf. Model..

[59]  Peter A Hunt,et al.  Predicting pKa Using a Combination of Semi-Empirical Quantum Mechanics and Radial Basis Function Methods , 2020, J. Chem. Inf. Model..

[60]  Derek Jones,et al.  Binding Affinity Prediction by Pairwise Function Based on Neural Network , 2020, J. Chem. Inf. Model..

[61]  Yanchun Zhang,et al.  A novel strategy for prediction of human plasma protein binding using machine learning techniques , 2020 .

[62]  Didier Rognan,et al.  LIT-PCBA: An Unbiased Data Set for Machine Learning and Virtual Screening , 2020, J. Chem. Inf. Model..

[63]  S. Mignani,et al.  hERG toxicity assessment: Useful guidelines for drug design. , 2020, European journal of medicinal chemistry.

[64]  Juyong Lee,et al.  AK-Score: Accurate Protein-Ligand Binding Affinity Prediction Using an Ensemble of 3D-Convolutional Neural Networks , 2020, International journal of molecular sciences.

[65]  Paul Czodrowski,et al.  Machine learning meets pK a , 2020, F1000Research.

[66]  Rachel St. Clair,et al.  Predicting Binding from Screening Assays with Transformer Network Embeddings , 2020, J. Chem. Inf. Model..

[67]  Eric J. Deeds,et al.  Machine learning classification can reduce false positives in structure-based virtual screening , 2020, Proceedings of the National Academy of Sciences.

[68]  Catherine Jorand Lebrun,et al.  Large-Scale Assessment of Binding Free Energy Calculations in Active Drug Discovery Projects , 2020, J. Chem. Inf. Model..

[69]  Gabriela Bitencourt-Ferreira,et al.  Taba: A Tool to Analyze the Binding Affinity , 2019, J. Comput. Chem..

[70]  Hugh Chen,et al.  From local explanations to global understanding with explainable AI for trees , 2020, Nature Machine Intelligence.

[71]  Rommie E. Amaro,et al.  D3R grand challenge 4: blind prediction of protein–ligand poses, affinity rankings, and relative binding free energies , 2019, Journal of Computer-Aided Molecular Design.

[72]  D. Larrey,et al.  Drug-Induced Liver Injury: Biomarkers, Requirements, Candidates, and Validation , 2019, Front. Pharmacol..

[73]  Brandon M. Greenwell,et al.  Multivariate Adaptive Regression Splines , 2019, Hands-On Machine Learning with R.

[74]  Yaohang Li,et al.  AttentionDTA: prediction of drug–target binding affinity using attention model , 2019, 2019 IEEE International Conference on Bioinformatics and Biomedicine (BIBM).

[75]  Peter Gedeck,et al.  Prediction of pKa Using Machine Learning Methods with Rooted Topological Torsion Fingerprints: Application to Aliphatic Amines , 2019, J. Chem. Inf. Model..

[76]  Jianing Lu,et al.  Incorporating Explicit Water Molecules and Ligand Conformation Stability in Machine-Learning Scoring Functions , 2019, J. Chem. Inf. Model..

[77]  Antony J. Williams,et al.  Open-source QSAR models for pKa prediction using multiple machine learning approaches , 2019, Journal of Cheminformatics.

[78]  G. Tresadern,et al.  DeltaDelta neural networks for lead optimization of small molecule potency† †Electronic supplementary information (ESI) available. See DOI: 10.1039/c9sc04606b , 2019, Chemical science.

[79]  Seongok Ryu,et al.  Predicting Drug-Target Interaction Using a Novel Graph Neural Network with 3D Structure-Embedded Graph Representation , 2019, J. Chem. Inf. Model..

[80]  Florian Leidner,et al.  Target-Specific Prediction of Ligand Affinity with Structure-Based Interaction Fingerprints , 2019, J. Chem. Inf. Model..

[81]  Guo-Wei Wei,et al.  AGL-Score: Algebraic Graph Learning Score for Protein-Ligand Binding Scoring, Ranking, Docking, and Screening , 2019, J. Chem. Inf. Model..

[82]  Yuguang Mu,et al.  OnionNet: a Multiple-Layer Intermolecular-Contact-Based Convolutional Neural Network for Protein–Ligand Binding Affinity Prediction , 2019, ACS omega.

[83]  Heather A Carlson,et al.  Updates to Binding MOAD (Mother of All Databases): Polypharmacology Tools and Their Utility in Drug Repurposing. , 2019, Journal of molecular biology.

[84]  C. Deane,et al.  Learning from the ligand: using ligand-based features to improve binding affinity prediction , 2019, Bioinform..

[85]  Jamie Munro,et al.  Trends in clinical success rates and therapeutic focus , 2019, Nature Reviews Drug Discovery.

[86]  Viktor Hornak,et al.  Hidden bias in the DUD-E dataset leads to misleading performance of deep learning in structure-based virtual screening , 2019, PloS one.

[87]  Matthias Rarey,et al.  In Need of Bias Control: Evaluating Chemical Data for Machine Learning in Structure-Based Virtual Screening , 2019, J. Chem. Inf. Model..

[88]  Oliver Koch,et al.  The Development of Target-Specific Machine Learning Models as Scoring Functions for Docking-Based Target Prediction , 2019, J. Chem. Inf. Model..

[89]  K. Friedemann Schmidt,et al.  Predictive Multitask Deep Neural Network Models for ADME-Tox Properties: Learning from Large Data Sets , 2019, J. Chem. Inf. Model..

[90]  Yadi Zhou,et al.  Exploring Tunable Hyperparameters for Deep Neural Networks with Industrial ADME Data Sets. , 2018, Journal of chemical information and modeling.

[91]  Alexios Koutsoukas,et al.  In-Silico Extraction of Design Ideas Using MMPA-by-QSAR and its Application on ADME Endpoints , 2018, J. Chem. Inf. Model..

[92]  Yan Li,et al.  Comparative Assessment of Scoring Functions: The CASF-2016 Update , 2018, J. Chem. Inf. Model..

[93]  Russ B. Altman,et al.  Graph Convolutional Neural Networks for Predicting Drug-Target Interactions , 2018, bioRxiv.

[94]  Andrew R. Leach,et al.  ChEMBL: towards direct deposition of bioassay data , 2018, Nucleic Acids Res..

[95]  Arzucan Özgür,et al.  ChemBoost: A Chemical Language Based Approach for Protein – Ligand Binding Affinity Prediction , 2018, Molecular informatics.

[96]  L. Dardenne,et al.  Empirical Scoring Functions for Structure-Based Virtual Screening: Applications, Critical Aspects, and Challenges , 2018, Front. Pharmacol..

[97]  Maciej Wójcikowski,et al.  Development of a protein–ligand extended connectivity (PLEC) fingerprint and its application for binding affinity predictions , 2018, Bioinform..

[98]  G. Currie Pharmacology, Part 2: Introduction to Pharmacokinetics , 2018, The Journal of Nuclear Medicine Technology.

[99]  Gianni De Fabritiis,et al.  PlayMolecule BindScope: large scale CNN-based virtual screening on the web , 2018, Bioinform..

[100]  Haichun Liu,et al.  ADME properties evaluation in drug discovery: in silico prediction of blood–brain partitioning , 2018, Molecular Diversity.

[101]  A. Poso,et al.  Binding Affinity via Docking: Fact and Fiction , 2018, Molecules.

[102]  Christophe Dardonville,et al.  Automated techniques in pKa determination: Low, medium and high-throughput screening methods. , 2018, Drug discovery today. Technologies.

[103]  Guo-Wei Wei,et al.  Mathematical deep learning for pose and binding affinity prediction and ranking in D3R Grand Challenges , 2018, Journal of Computer-Aided Molecular Design.

[104]  Ming Yang,et al.  A novel adaptive ensemble classification framework for ADME prediction , 2018, RSC advances.

[105]  Lei Jia,et al.  Chemi-Net: A Molecular Graph Convolutional Network for Accurate Drug Property Prediction , 2018, International journal of molecular sciences.

[106]  Yang Li,et al.  PotentialNet for Molecular Property Prediction , 2018, ACS central science.

[107]  Lixin Guan,et al.  Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods , 2018, Scientific Reports.

[108]  Yan Wu,et al.  Prediction of pKa Values for Neutral and Basic Drugs based on Hybrid Artificial Intelligence Methods , 2018, Scientific Reports.

[109]  Leland McInnes,et al.  UMAP: Uniform Manifold Approximation and Projection for Dimension Reduction , 2018, ArXiv.

[110]  Arzucan Özgür,et al.  DeepDTA: deep drug–target binding affinity prediction , 2018, Bioinform..

[111]  Gianni De Fabritiis,et al.  KDEEP: Protein-Ligand Absolute Binding Affinity Prediction via 3D-Convolutional Neural Networks , 2018, J. Chem. Inf. Model..

[112]  Marta M. Stepniewska-Dziubinska,et al.  Development and evaluation of a deep learning model for protein–ligand binding affinity prediction , 2017, Bioinform..

[113]  David S. Wishart,et al.  DrugBank 5.0: a major update to the DrugBank database for 2018 , 2017, Nucleic Acids Res..

[114]  Pietro Liò,et al.  Graph Attention Networks , 2017, ICLR.

[115]  Scott Lundberg,et al.  A Unified Approach to Interpreting Model Predictions , 2017, NIPS.

[116]  Samuel S. Schoenholz,et al.  Neural Message Passing for Quantum Chemistry , 2017, ICML.

[117]  Andy Powrie-Smith,et al.  European Federation of Pharmaceutical Industries and Associations , 2017 .

[118]  Roland L. Dunbrack,et al.  The Rosetta all-atom energy function for macromolecular modeling and design , 2017, bioRxiv.

[119]  J. Tuszynski,et al.  Software for molecular docking: a review , 2017, Biophysical Reviews.

[120]  Kaitlyn M. Gayvert,et al.  A Data-Driven Approach to Predicting Successes and Failures of Clinical Trials. , 2016, Cell chemical biology.

[121]  Liliane Mouawad,et al.  Benchmark of four popular virtual screening programs: construction of the active/decoy dataset remains a major determinant of measured performance , 2016, Journal of Cheminformatics.

[122]  Makoto Hayashi,et al.  The micronucleus test—most widely used in vivo genotoxicity test— , 2016, Genes and Environment.

[123]  Max Welling,et al.  Semi-Supervised Classification with Graph Convolutional Networks , 2016, ICLR.

[124]  Richard D. Smith,et al.  CSAR Benchmark Exercise 2013: Evaluation of Results from a Combined Computational Protein Design, Docking, and Scoring/Ranking Challenge , 2016, J. Chem. Inf. Model..

[125]  Richard D. Smith,et al.  CSAR 2014: A Benchmark Exercise Using Unpublished Data from Pharma , 2016, J. Chem. Inf. Model..

[126]  A. Cavalli,et al.  Role of Molecular Dynamics and Related Methods in Drug Discovery. , 2016, Journal of medicinal chemistry.

[127]  Günter Klambauer,et al.  DeepTox: Toxicity Prediction using Deep Learning , 2016, Front. Environ. Sci..

[128]  Ruili Huang,et al.  Tox21Challenge to Build Predictive Models of Nuclear Receptor and Stress Response Pathways as Mediated by Exposure to Environmental Chemicals and Drugs , 2016, Front. Environ. Sci..

[129]  Michael K. Gilson,et al.  BindingDB in 2015: A public database for medicinal chemistry, computational chemistry and systems pharmacology , 2015, Nucleic Acids Res..

[130]  Jennifer L. Knight,et al.  Accurate and reliable prediction of relative ligand binding potency in prospective drug discovery by way of a modern free-energy calculation protocol and force field. , 2015, Journal of the American Chemical Society.

[131]  Jie Li,et al.  Comparative Assessment of Scoring Functions on an Updated Benchmark: 1. Compilation of the Test Set , 2014, J. Chem. Inf. Model..

[132]  Zhihai Liu,et al.  Comparative Assessment of Scoring Functions on an Updated Benchmark: 2. Evaluation Methods and General Results , 2014, J. Chem. Inf. Model..

[133]  Tao Xu,et al.  Making Sense of Large-Scale Kinase Inhibitor Bioactivity Data Sets: A Comparative and Integrative Analysis , 2014, J. Chem. Inf. Model..

[134]  Andrew Zisserman,et al.  Deep Inside Convolutional Networks: Visualising Image Classification Models and Saliency Maps , 2013, ICLR.

[135]  Jetse Reijenga,et al.  Development of Methods for the Determination of pKa Values , 2013, Analytical chemistry insights.

[136]  Emil Alexov,et al.  The role of protonation states in ligand-receptor recognition and binding. , 2013, Current pharmaceutical design.

[137]  Richard D. Smith,et al.  CSAR Data Set Release 2012: Ligands, Affinities, Complexes, and Docking Decoys , 2013, J. Chem. Inf. Model..

[138]  Richard D. Smith,et al.  CSAR Benchmark Exercise 2011–2012: Evaluation of Results from Docking and Relative Ranking of Blinded Congeneric Series , 2013, J. Chem. Inf. Model..

[139]  Michael M. Mysinger,et al.  Directory of Useful Decoys, Enhanced (DUD-E): Better Ligands and Decoys for Better Benchmarking , 2012, Journal of medicinal chemistry.

[140]  G. V. Paolini,et al.  Quantifying the chemical beauty of drugs. , 2012, Nature chemistry.

[141]  Frank M. Boeckler,et al.  DEKOIS: Demanding Evaluation Kits for Objective in Silico Screening - A Versatile Tool for Benchmarking Docking Programs and Scoring Functions , 2011, J. Chem. Inf. Model..

[142]  Richard D. Smith,et al.  CSAR Benchmark Exercise of 2010: Combined Evaluation Across All Submitted Scoring Functions , 2011, J. Chem. Inf. Model..

[143]  Richard D. Smith,et al.  CSAR Benchmark Exercise of 2010: Selection of the Protein–Ligand Complexes , 2011, J. Chem. Inf. Model..

[144]  L. Turco,et al.  Caco‐2 Cells as a Model for Intestinal Absorption , 2011, Current protocols in toxicology.

[145]  Witold R. Rudnicki,et al.  Boruta - A System for Feature Selection , 2010, Fundam. Informaticae.

[146]  David Rogers,et al.  Extended-Connectivity Fingerprints , 2010, J. Chem. Inf. Model..

[147]  Marc C. Nicklaus,et al.  Comparison of Nine Programs Predicting pKa Values of Pharmaceutical Substances , 2009, J. Chem. Inf. Model..

[148]  Zhihai Liu,et al.  Comparative Assessment of Scoring Functions on a Diverse Test Set , 2009, J. Chem. Inf. Model..

[149]  Sebastian G. Rohrer,et al.  Maximum Unbiased Validation (MUV) Data Sets for Virtual Screening Based on PubChem Bioactivity Data , 2009, J. Chem. Inf. Model..

[150]  A. Małecki,et al.  Physiology and pharmacological role of the blood-brain barrier. , 2008, Pharmacological reports : PR.

[151]  Frank J. Gonzalez,et al.  The pregnane X receptor: from bench to bedside , 2008, Expert opinion on drug metabolism & toxicology.

[152]  M. Shimizu,et al.  Activation of pregnane X receptor and induction of MDR1 by dietary phytochemicals. , 2008, Journal of agricultural and food chemistry.

[153]  P. Hawkins,et al.  How to do an evaluation: pitfalls and traps , 2008, J. Comput. Aided Mol. Des..

[154]  Tudor I. Oprea,et al.  Optimization of CAMD techniques 3. Virtual screening enrichment studies: a help or hindrance in tool selection? , 2008, J. Comput. Aided Mol. Des..

[155]  Manfred Kansy,et al.  Predicting and Tuning Physicochemical Properties in Lead Optimization: Amine Basicities , 2007, ChemMedChem.

[156]  Gábor Csányi,et al.  Gaussian Processes: A Method for Automatic QSAR Modeling of ADME Properties , 2007, J. Chem. Inf. Model..

[157]  Paul N. Mortenson,et al.  Diverse, high-quality test set for the validation of protein-ligand docking performance. , 2007, Journal of medicinal chemistry.

[158]  J. Irwin,et al.  Benchmarking sets for molecular docking. , 2006, Journal of medicinal chemistry.

[159]  Zhide Hu,et al.  Prediction of pKa for Neutral and Basic Drugs Based on Radial Basis Function Neural Networks and the Heuristic Method , 2005, Pharmaceutical Research.

[160]  B. Shoichet,et al.  Decoys for docking. , 2005, Journal of medicinal chemistry.

[161]  I. Kola,et al.  Can the pharmaceutical industry reduce attrition rates? , 2004, Nature Reviews Drug Discovery.

[162]  Arthur M. Doweyko,et al.  3D-QSAR illusions , 2004, J. Comput. Aided Mol. Des..

[163]  Renxiao Wang,et al.  The PDBbind database: collection of binding affinities for protein-ligand complexes with known three-dimensional structures. , 2004, Journal of medicinal chemistry.

[164]  J. Szeberényi The ames test , 2003 .

[165]  M. Buhmann Radial Basis Functions: Theory and Implementations , 2003 .

[166]  Timothy M Willson,et al.  The nuclear pregnane X receptor: a key regulator of xenobiotic metabolism. , 2002, Endocrine reviews.

[167]  James G. Nourse,et al.  Reoptimization of MDL Keys for Use in Drug Discovery , 2002, J. Chem. Inf. Comput. Sci..

[168]  J. Friedman Stochastic gradient boosting , 2002 .

[169]  L. Breiman Random Forests , 2001, Encyclopedia of Machine Learning and Data Mining.

[170]  J. Friedman Greedy function approximation: A gradient boosting machine. , 2001 .

[171]  Arthur E. Hoerl,et al.  Ridge Regression: Biased Estimation for Nonorthogonal Problems , 2000, Technometrics.

[172]  P. Roepe,et al.  The P-Glycoprotein Efflux Pump: How Does it Transport Drugs? , 1998, The Journal of Membrane Biology.

[173]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[174]  Alexander J. Smola,et al.  Support Vector Method for Function Approximation, Regression Estimation and Signal Processing , 1996, NIPS.

[175]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[176]  Corinna Cortes,et al.  Support-Vector Networks , 1995, Machine Learning.

[177]  R. Tibshirani,et al.  Flexible Discriminant Analysis by Optimal Scoring , 1994 .

[178]  E. Myers,et al.  Basic local alignment search tool. , 1990, Journal of molecular biology.

[179]  A. Höskuldsson PLS regression methods , 1988 .

[180]  Ramaswamy Nilakantan,et al.  Topological torsion: a new molecular descriptor for SAR applications. Comparison with other descriptors , 1987, J. Chem. Inf. Comput. Sci..

[181]  J. Ross Quinlan,et al.  Induction of Decision Trees , 1986, Machine Learning.

[182]  R. Venkataraghavan,et al.  Atom pairs as molecular features in structure-activity studies: definition and applications , 1985, J. Chem. Inf. Comput. Sci..

[183]  Michael L. Connolly,et al.  Computation of molecular volume , 1985 .

[184]  J M Blaney,et al.  A geometric approach to macromolecule-ligand interactions. , 1982, Journal of molecular biology.

[185]  G. V. Kass An Exploratory Technique for Investigating Large Quantities of Categorical Data , 1980 .

[186]  Y. Cheng,et al.  Relationship between the inhibition constant (K1) and the concentration of inhibitor which causes 50 per cent inhibition (I50) of an enzymatic reaction. , 1973, Biochemical pharmacology.

[187]  C. W. Pettinga Research and Development in the Pharmaceutical Industry , 1971 .

[188]  H. L. Morgan The Generation of a Unique Machine Description for Chemical Structures-A Technique Developed at Chemical Abstracts Service. , 1965 .

[189]  F ROSENBLATT,et al.  The perceptron: a probabilistic model for information storage and organization in the brain. , 1958, Psychological review.

[190]  L. Vietoris Über den höheren Zusammenhang kompakter Räume und eine Klasse von zusammenhangstreuen Abbildungen , 1927 .

[191]  慧慧 周,et al.  Algorithmic Research on Exploring Neural Networks with Activation Atlases , 2022, Software Engineering and Applications.

[192]  Daniel M. Packwood,et al.  Machine Learning in Materials Chemistry: An Invitation , 2022, Machine Learning with Applications.

[193]  A. Talevi,et al.  pKa Determination , 2021, The ADME Encyclopedia.

[194]  Paul G. Francoeur,et al.  Three-Dimensional Convolutional Neural Networks and a Cross-Docked Data Set for Structure-Based Drug Design , 2020, J. Chem. Inf. Model..

[195]  Lucy J. Colwell,et al.  Evaluating Attribution for Graph Neural Networks , 2020, NeurIPS.

[196]  F. Chaubet,et al.  Pharmacology: Drug Delivery , 2019, Encyclopedia of Biomedical Engineering.

[197]  O. Isayev,et al.  ANI-1: an extensible neural network potential with DFT accuracy at force fi eld computational cost † , 2017 .

[198]  S. Chemtob,et al.  18 – Basic Pharmacologic Principles , 2017 .

[199]  A. Gammerman,et al.  Chapter 6 – Feature Selection , 2014 .

[200]  Robert J. Young,et al.  Physical Properties in Drug Design , 2014 .

[201]  Vladimir Vovk,et al.  Kernel Ridge Regression , 2013, Empirical Inference.

[202]  F. Guengerich,et al.  Mechanisms of drug toxicity and relevance to pharmaceutical development. , 2011, Drug metabolism and pharmacokinetics.

[203]  Nipa Shah,et al.  Biopharmaceutics classification system: validation and learnings of an in vitro permeability assay. , 2009, Molecular pharmaceutics.

[204]  Pascal Vincent,et al.  Visualizing Higher-Layer Features of a Deep Network , 2009 .

[205]  Geoffrey E. Hinton,et al.  Visualizing Data using t-SNE , 2008 .

[206]  B. Walther,et al.  5.10 – In Vitro Studies of Drug Metabolism , 2007 .

[207]  Jianling Wang,et al.  The impact of early ADME profiling on drug discovery and development strategy , 2004 .

[208]  L. Lesko,et al.  Measures of Exposure versus Measures of Rate and Extent of Absorption , 2001, Clinical pharmacokinetics.

[209]  John C. Platt,et al.  Probabilistic Outputs for Support vector Machines and Comparisons to Regularized Likelihood Methods , 1999 .

[210]  R. Tibshirani Regression Shrinkage and Selection via the Lasso , 1996 .

[211]  R. Ogilvie,et al.  An introduction to pharmacokinetics. , 1983, Journal of chronic diseases.

[212]  J. Ross Quinlan,et al.  Learning Efficient Classification Procedures and Their Application to Chess End Games , 1983 .

[213]  Peter E. Hart,et al.  Nearest neighbor pattern classification , 1967, IEEE Trans. Inf. Theory.

[214]  Philip J. Stone,et al.  Experiments in induction , 1966 .