Synaptic plasticity and dynamic modulation of the postsynaptic membrane

The biochemical composition of the postsynaptic membrane and the structure of dendritic spines may be rapidly modulated by synaptic activity. Here we review these findings, discuss their implications for long-term potentiation (LTP) and long-term depression (LTD) and propose a model of sequentially occurring expression mechanisms.

[1]  Hilla Peretz,et al.  Ju n 20 03 Schrödinger ’ s Cat : The rules of engagement , 2003 .

[2]  P Siekevitz,et al.  Plasticity in the central nervous system: do synapses divide? , 1983, Proceedings of the National Academy of Sciences of the United States of America.

[3]  G. Lynch,et al.  The biochemistry of memory: a new and specific hypothesis. , 1984, Science.

[4]  M. Krug,et al.  Spinules in axospinous synapses of the rat dentate gyrus: changes in density following long-term potentiation , 1990, Brain Research.

[5]  Leyla deToledo-Morrell,et al.  Induction of long-term potentiation is associated with an increase in the number of axospinous synapses with segmented postsynaptic densities , 1991, Brain Research.

[6]  Kristen M. Harris,et al.  Quantal analysis and synaptic anatomy — integrating two views of hippocampal plasticity , 1993, Trends in Neurosciences.

[7]  T. Soderling,et al.  Phosphorylation and regulation of glutamate receptors by calcium/calmodulin-dependent protein kinase II , 1993, Nature.

[8]  Y. Geinisman,et al.  Perforated axospinous synapses with multiple, completely partitioned transmission zones: Probable structural intermediates in synaptic plasticity , 1993, Hippocampus.

[9]  D. Muller,et al.  Long-term potentiation is associated with an increased activity of Ca2+/calmodulin-dependent protein kinase II. , 1993, The Journal of biological chemistry.

[10]  S. B. Kater,et al.  Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. , 1994, Annual review of neuroscience.

[11]  J. Isaac,et al.  Evidence for silent synapses: Implications for the expression of LTP , 1995, Neuron.

[12]  R. Malinow,et al.  Activation of postsynaptically silent synapses during pairing-induced LTP in CA1 region of hippocampal slice , 1995, Nature.

[13]  D. Rusakov,et al.  Repeated confocal imaging of individual dendritic spines in the living hippocampal slice: evidence for changes in length and orientation associated with chemically induced LTP , 1995, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[14]  F. Edwards,et al.  Anatomy and electrophysiology of fast central synapses lead to a structural model for long-term potentiation. , 1995, Physiological reviews.

[15]  H. Schulman,et al.  The multifunctional calcium/calmodulin-dependent protein kinase: from form to function. , 1995, Annual review of physiology.

[16]  R. Nicoll,et al.  Calcium/calmodulin-dependent kinase II and long-term potentiation enhance synaptic transmission by the same mechanism. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[17]  A. Konnerth,et al.  Long-term potentiation and functional synapse induction in developing hippocampus , 1996, Nature.

[18]  F. Morrell,et al.  Synapse restructuring associated with the maintenance phase of hippocampal long‐term potentiation , 1996, The Journal of comparative neurology.

[19]  D. Muller,et al.  Induction of long-term potentiation is associated with major ultrastructural changes of activated synapses. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[20]  Stephen J. Smith,et al.  The Dynamics of Dendritic Structure in Developing Hippocampal Slices , 1996, The Journal of Neuroscience.

[21]  P. Andersen,et al.  Long-term potentiation is associated with new excitatory spine synapses on rat dentate granule cells. , 1996, Learning & memory.

[22]  Stephen J. Smith,et al.  Evidence for a Role of Dendritic Filopodia in Synaptogenesis and Spine Formation , 1996, Neuron.

[23]  T. Soderling,et al.  Identification of the Ca2+/Calmodulin-dependent Protein Kinase II Regulatory Phosphorylation Site in the α-Amino-3-hydroxyl-5-methyl4-isoxazole-propionate-type Glutamate Receptor* , 1997, The Journal of Biological Chemistry.

[24]  Mary B. Kennedy,et al.  The postsynaptic density at glutamatergic synapses , 1997, Trends in Neurosciences.

[25]  D. Muller Ultrastructural Plasticity of Excitatory Synapses , 1997, Reviews in the neurosciences.

[26]  E. Ziff Enlightening the Postsynaptic Density , 1997, Neuron.

[27]  R. Huganir,et al.  Phosphorylation of the α-Amino-3-hydroxy-5-methylisoxazole4-propionic Acid Receptor GluR1 Subunit by Calcium/ Calmodulin-dependent Kinase II* , 1997, The Journal of Biological Chemistry.

[28]  K M Harris,et al.  Three-Dimensional Organization of Smooth Endoplasmic Reticulum in Hippocampal CA1 Dendrites and Dendritic Spines of the Immature and Mature Rat , 1997, The Journal of Neuroscience.

[29]  R. Huganir,et al.  Interaction of the N-Ethylmaleimide–Sensitive Factor with AMPA Receptors , 1998, Neuron.

[30]  Peter Somogyi,et al.  Cell Type and Pathway Dependence of Synaptic AMPA Receptor Number and Variability in the Hippocampus , 1998, Neuron.

[31]  Andreas Lüthi,et al.  Modulation of AMPA receptor unitary conductance by synaptic activity , 1998, Nature.

[32]  Christian Lüscher,et al.  Monitoring Glutamate Release during LTP with Glial Transporter Currents , 1998, Neuron.

[33]  Mary B. Kennedy,et al.  Signal transduction molecules at the glutamatergic postsynaptic membrane 1 Published on the World Wide Web on 24 October 1997. 1 , 1998, Brain Research Reviews.

[34]  P. Osten,et al.  The AMPA Receptor GluR2 C Terminus Can Mediate a Reversible, ATP-Dependent Interaction with NSF and α- and β-SNAPs , 1998, Neuron.

[35]  J. Fiala,et al.  Synaptogenesis Via Dendritic Filopodia in Developing Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[36]  R. Malinow,et al.  Calcium-Evoked Dendritic Exocytosis in Cultured Hippocampal Neurons. Part I: Trans-Golgi Network-Derived Organelles Undergo Regulated Exocytosis , 1998, The Journal of Neuroscience.

[37]  R. Nicoll,et al.  Postsynaptic membrane fusion and long-term potentiation. , 1998, Science.

[38]  G. Collingridge,et al.  NSF Binding to GluR2 Regulates Synaptic Transmission , 1998, Neuron.

[39]  M. Fischer,et al.  Rapid Actin-Based Plasticity in Dendritic Spines , 1998, Neuron.

[40]  J. Lichtman,et al.  Synaptic segregation at the developing neuromuscular junction. , 1998, Science.

[41]  R. Weinberg,et al.  Enhanced expression of AMPA receptor protein at perforated axospinous synapses , 1998, Neuroreport.

[42]  T. Südhof,et al.  Neurexins: three genes and 1001 products. , 1998, Trends in genetics : TIG.

[43]  S. Halpain,et al.  Regulation of F-Actin Stability in Dendritic Spines by Glutamate Receptors and Calcineurin , 1998, The Journal of Neuroscience.

[44]  P. Osten,et al.  The AMPA receptor GluR2 C terminus can mediate a reversible, ATP-dependent interaction with NSF and alpha- and beta-SNAPs. , 1998, Neuron.

[45]  Dwight E Bergles,et al.  Glutamate Release Monitored with Astrocyte Transporter Currents during LTP , 1998, Neuron.

[46]  J. Fiala,et al.  Critical assessment of the involvement of perforations, spinules, and spine branching in hippocampal synapse formation , 1998, The Journal of comparative neurology.

[47]  K M Harris,et al.  Stability in Synapse Number and Size at 2 Hr after Long-Term Potentiation in Hippocampal Area CA1 , 1998, The Journal of Neuroscience.

[48]  K. Svoboda,et al.  Rapid dendritic morphogenesis in CA1 hippocampal dendrites induced by synaptic activity. , 1999, Science.

[49]  Mark von Zastrow,et al.  Rapid redistribution of glutamate receptors contributes to long-term depression in hippocampal cultures , 1999, Nature Neuroscience.

[50]  A. Matus Postsynaptic actin and neuronal plasticity , 1999, Current Opinion in Neurobiology.

[51]  K. Harris,et al.  Dendrites are more spiny on mature hippocampal neurons when synapses are inactivated , 1999, Nature Neuroscience.

[52]  R. Nicoll,et al.  Dynamin-dependent endocytosis of ionotropic glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[53]  U. Hanisch,et al.  Cytoskeletal dynamics in dendritic spines: direct modulation by glutamate receptors? , 1999, Trends in Neurosciences.

[54]  Marco Capogna,et al.  Miniature synaptic events maintain dendritic spines via AMPA receptor activation , 1999, Nature Neuroscience.

[55]  Andreas Lüthi,et al.  Hippocampal LTD Expression Involves a Pool of AMPARs Regulated by the NSF–GluR2 Interaction , 1999, Neuron.

[56]  M Segal,et al.  Release of calcium from stores alters the morphology of dendritic spines in cultured hippocampal neurons. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[57]  R. Racine,et al.  Sequential changes in the synaptic structural profile following long-term potentiation in the rat dentate gyrus: I. The intermediate maintenance phase. , 1999, Synapse.

[58]  K. Shen,et al.  Dynamic control of CaMKII translocation and localization in hippocampal neurons by NMDA receptor stimulation. , 1999, Science.

[59]  Petter Laake,et al.  Different modes of expression of AMPA and NMDA receptors in hippocampal synapses , 1999, Nature Neuroscience.

[60]  R. Nicoll,et al.  Rapid, Activation-Induced Redistribution of Ionotropic Glutamate Receptors in Cultured Hippocampal Neurons , 1999, The Journal of Neuroscience.

[61]  S. Kaech,et al.  Volatile anesthetics block actin-based motility in dendritic spines. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[62]  G. Collingridge,et al.  Surface Expression of AMPA Receptors in Hippocampal Neurons Is Regulated by an NSF-Dependent Mechanism , 1999, Neuron.

[63]  John E. Lisman,et al.  A Role of Actin Filament in Synaptic Transmission and Long-Term Potentiation , 1999, The Journal of Neuroscience.

[64]  T. Südhof,et al.  Neuroligin 1 is a postsynaptic cell-adhesion molecule of excitatory synapses. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[65]  T. Soderling,et al.  Ca2+/calmodulin-kinase II enhances channel conductance of alpha-amino-3-hydroxy-5-methyl-4-isoxazolepropionate type glutamate receptors. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[66]  Mark von Zastrow,et al.  Role of AMPA Receptor Cycling in Synaptic Transmission and Plasticity , 1999, Neuron.

[67]  F. Engert,et al.  Dendritic spine changes associated with hippocampal long-term synaptic plasticity , 1999, Nature.

[68]  K. Svoboda,et al.  Rapid spine delivery and redistribution of AMPA receptors after synaptic NMDA receptor activation. , 1999, Science.

[69]  T. Bliss,et al.  Single Synaptic Events Evoke NMDA Receptor–Mediated Release of Calcium from Internal Stores in Hippocampal Dendritic Spines , 1999, Neuron.

[70]  N. Toni,et al.  LTP promotes formation of multiple spine synapses between a single axon terminal and a dendrite , 1999, Nature.

[71]  K. Harris Calcium from internal stores modifies dendritic spine shape. , 1999, Proceedings of the National Academy of Sciences of the United States of America.

[72]  J. Sanes,et al.  Can molecules explain long-term potentiation? , 1999, Nature Neuroscience.

[73]  R. Malinow,et al.  Driving AMPA receptors into synapses by LTP and CaMKII: requirement for GluR1 and PDZ domain interaction. , 2000, Science.

[74]  Eduard Korkotian,et al.  Dendritic spine formation and pruning: common cellular mechanisms? , 2000, Trends in Neurosciences.

[75]  T. Soderling,et al.  Postsynaptic protein phosphorylation and LTP , 2000, Trends in Neurosciences.

[76]  Yu Tian Wang,et al.  Regulation of AMPA Receptor–Mediated Synaptic Transmission by Clathrin-Dependent Receptor Internalization , 2000, Neuron.

[77]  D. Linden,et al.  Expression of Cerebellar Long-Term Depression Requires Postsynaptic Clathrin-Mediated Endocytosis , 2000, Neuron.