Valence of praseodymium in superconducting Pr(O,F)BiS2 single crystals

The praseodymium (Pr) valence in superconducting PrO1−xFxBiS2 single crystals was evaluated by X-ray photoelectron spectroscopy. The Pr 3d core level is split into 3d3/2 and 3d5/2 levels. Both PrO1−xFxBiS2 and Pr2S3, which contain only Pr3+, showed 3d spectra at a lower binding energy than Pr6O11, which contains both Pr3+ and Pr4+. Neither PrO1−xFxBiS2 nor Pr2S3 showed the characteristic satellites of Pr4+ in 3d5/2 spectra. The valence fluctuation between the Pr3+ and Pr4+ states was not confirmed, suggesting that Pr3+ is dominant in PrO1−xFxBiS2 single crystals.

[1]  M. Nagao,et al.  C-axis electrical resistivity of PrO1−aFaBiS2 single crystals , 2015, 1506.07231.

[2]  M. Nagao,et al.  Structure, Superconductivity, and Magnetism of Ce(O,F)BiS2 Single Crystals , 2015 .

[3]  E. Paris,et al.  Role of the Ce valence in the coexistence of superconductivity and ferromagnetism of CeO 1-x F x BiS 2 revealed by Ce L 3 -edge x-ray absorption spectroscopy , 2014, 1405.5639.

[4]  M. Nagao,et al.  Crystal structures of LaO1−xFxBiS2 (x~0.23, 0.46): Effect of F doping on distortion of Bi–S plane , 2014, 1401.6814.

[5]  M. Nagao,et al.  Growth and superconducting properties of F-substituted ROBiS2 (R=La, Ce, Nd) single crystals , 2013, 1310.1213.

[6]  J. Frade,et al.  Thermochemical behavior and transport properties of Pr-substituted SrTiO3 as potential solid oxide fuel cell anode , 2014 .

[7]  R. Jha,et al.  Superconducting and magneto-transport properties of BiS2 based superconductor PrO1-xFxBiS2 (x = 0 to 0.9) , 2013, 1312.3707.

[8]  M. Nagao,et al.  Structural Analysis and Superconducting Properties of F-Substituted NdOBiS2 Single Crystals , 2013, 1309.6400.

[9]  M. Maple,et al.  Pressure-induced enhancement of superconductivity and suppression of semiconducting behavior in L n O 0.5 F 0.5 BiS 2 ( L n = La ,Ce) compounds , 2013, 1307.4157.

[10]  R. Jha,et al.  Hydrostatic pressure effect on Tc of new BiS2‐based Bi4O4S3 and NdO0.5F0.5BiS2 layered superconductors , 2013, 1307.0645.

[11]  Y. Takahide,et al.  New Member of BiS2-Based Superconductor NdO1-xFxBiS2 , 2013 .

[12]  M. Maple,et al.  Superconductivity of F-substituted LnOBiS2 (Ln=La, Ce, Pr, Nd, Yb) compounds , 2013, 1301.3932.

[13]  Shruti,et al.  Appearance of superconductivity in layered LaO0.5F0.5BiS2 , 2012, 1207.6845.

[14]  Anuj Kumar,et al.  Synthesis and Superconductivity of New BiS2 Based Superconductor PrO0.5F0.5BiS2 , 2012, 1208.5873.

[15]  H. Wen,et al.  Superconductivity Appears in the Vicinity of an Insulating-Like Behavior in CeO$_{1-x}$F$_{x}$BiS$_{2}$ , 2012, 1208.5000.

[16]  S. Demura,et al.  Superconductivity in novel BiS2-based layered superconductor LaO1-xFxBiS2 , 2012, 1207.3558.

[17]  Yusuke Yamada,et al.  Structural Characteristics and Catalytic Activity of Nanocrystalline Ceria−Praseodymia Solid Solutions , 2009 .

[18]  P. Zaumseil,et al.  On the band gaps and electronic structure of thin single crystalline praseodymium oxide layers on Si(111) , 2009 .

[19]  J. Jensen Static and dynamic Jahn-Teller effects and antiferromagnetic order in PrO2 : A mean-field analysis , 2007 .

[20]  G. McIntyre,et al.  Cooperative Jahn-Teller distortion in PrO2. , 2003, cond-mat/0311294.

[21]  D. Holland,et al.  Magnetic properties of praseodymium ions in Na2O–Pr2O3–SiO2 glasses , 2003 .

[22]  G. Graham,et al.  Kinetic and structural studies of oxygen availability of the mixed oxides Pr_1–xM_xO_y (M = Ce, Zr) , 1996 .

[23]  Okada,et al.  Many-body effects in praesodymium core-level spectroscopies of PrO2. , 1988, Physical review. B, Condensed matter.