Black's Model of Interest Rates as Options, Eigenfunction Expansions and Japanese Interest Rates

Black's (1995) model of interest rates as options assumes that there is a shadow instantaneous interest rate that can become negative, while the nominal instantaneous interest rate is a positive part of the shadow rate due to the option to convert to currency. As a result of this currency option, all term rates are strictly positive. A similar model was independently discussed by Rogers (1995) . When the shadow rate is modeled as a diffusion, we interpret the zero‐coupon bond as a Laplace transform of the area functional of the underlying shadow rate diffusion (evaluated at the unit value of the transform parameter). Using the method of eigenfunction expansions, we derive analytical solutions for zero‐coupon bonds and bond options under the Vasicek and shifted CIR processes for the shadow rate. This class of models can be used to model low interest rate regimes. As an illustration, we calibrate the model with the Vasicek shadow rate to the Japanese Government Bond data and show that the model provides an excellent fit to the Japanese term structure. The current implied value of the instantaneous shadow rate in Japan is negative.

[1]  W. Feller TWO SINGULAR DIFFUSION PROBLEMS , 1951 .

[2]  A. Erdélyi,et al.  Higher Transcendental Functions , 1954 .

[3]  T. MacRobert Higher Transcendental Functions , 1955, Nature.

[4]  H. McKean Elementary solutions for certain parabolic partial differential equations , 1956 .

[5]  W. N. Bailey Confluent Hypergeometric Functions , 1960, Nature.

[6]  E. K. Wong The Construction of a Class of Stationary Markoff Processes , 1964 .

[7]  R. A. Silverman,et al.  Special functions and their applications , 1966 .

[8]  I. M. Glazman Direct methods of qualitative spectral analysis of singular differential operators , 1965 .

[9]  Irene A. Stegun,et al.  Handbook of Mathematical Functions. , 1966 .

[10]  Diffusion Processes and their Sample Paths. , 1968 .

[11]  H. Buchholz The Confluent Hypergeometric Function , 2021, A Course of Modern Analysis.

[12]  G. Reuter LINEAR OPERATORS PART II (SPECTRAL THEORY) , 1969 .

[13]  Shinzo Watanabe,et al.  Bessel diffusions as a one-parameter family of diffusion processes , 1973 .

[14]  E. Coddington,et al.  Spectral theory of ordinary differential operators , 1975 .

[15]  Oldrich A. Vasicek An equilibrium characterization of the term structure , 1977 .

[16]  Eduardo S. Schwartz,et al.  A continuous time approach to the pricing of bonds , 1979 .

[17]  S. Karlin,et al.  A second course in stochastic processes , 1981 .

[18]  J. Pitman,et al.  A decomposition of Bessel Bridges , 1982 .

[19]  S. Ross,et al.  A theory of the term structure of interest rates'', Econometrica 53, 385-407 , 1985 .

[20]  Ioannis Karatzas,et al.  Brownian Motion and Stochastic Calculus , 1987 .

[21]  J. Weidmann,et al.  Spectral Theory of Ordinary Differential Operators , 1987 .

[22]  D. Heath,et al.  Bond Pricing and the Term Structure of Interest Rates: A Discrete Time Approximation , 1990, Journal of Financial and Quantitative Analysis.

[23]  F. Jamshidian An Exact Bond Option Formula , 1989 .

[24]  J. Hull Options, Futures, and Other Derivatives , 1989 .

[25]  Robert A. Jarrow,et al.  The Stop-Loss Start-Gain Paradox and Option Valuation: A New Decomposition into Intrinsic and Time Value , 1990 .

[26]  Generalized Second-Order Differential Operators, Corresponding Gap Diffusions and Superharmonic Transformations , 1990 .

[27]  F. Black,et al.  Bond and Option Pricing when Short Rates are Lognormal , 1991 .

[28]  J. Löbus Generalized Second Order Differential Operators , 1991 .

[29]  M. Yor,et al.  BESSEL PROCESSES, ASIAN OPTIONS, AND PERPETUITIES , 1993 .

[30]  Steven Pruess,et al.  An asymptotic numerical method for a class of singular Sturm-Liouville problems , 1995 .

[31]  Fischer Black,et al.  Interest Rates as Options , 1995 .

[32]  L. Rogers Which model for term-structure of interest rates should one use? , 1995 .

[33]  D. Duffie,et al.  A Yield-factor Model of Interest Rates , 1996 .

[34]  Israel Michael Sigal,et al.  Introduction to Spectral Theory , 1996 .

[35]  D. Duffie,et al.  A YIELD-FACTOR MODEL OF INTEREST RATES , 1996 .

[36]  H. McKean,et al.  Diffusion processes and their sample paths , 1996 .

[37]  J. Wellner,et al.  On the distribution of Brownian areas , 1996 .

[38]  Steps to the Barrier , 1996 .

[39]  K. Singleton,et al.  Specification Analysis of Affine Term Structure Models , 1997 .

[40]  R. Goldstein,et al.  On the Term Structure of Interest Rates in the Presence of Reflecting and Absorbing Boundaries , 1997 .

[41]  M. Yor,et al.  Brownian Excursions and Parisian Barrier Options , 1997, Advances in Applied Probability.

[42]  Timothy G. Conley,et al.  Short-term interest rates as subordinated diffusions , 1997 .

[43]  Alan L. Lewis Applications of Eigenfunction Expansions in Continuous‐Time Finance , 1998 .

[44]  L. Hansen,et al.  Spectral methods for identifying scalar diffusions , 1998 .

[45]  V. Linetsky Step Options , 1999 .

[46]  Alan L. Lewis Option Valuation under Stochastic Volatility , 2000 .

[47]  Gurdip Bakshi,et al.  Pricing and hedging long-term options , 2000 .

[48]  D. Dufresne Laguerre Series for Asian and Other Options , 2000 .

[49]  P. Carr,et al.  The Valuation of Executive Stock Options in an Intensity-Based Framework , 2000 .

[50]  M. Yor Exponential Functionals of Brownian Motion and Related Processes , 2001 .

[51]  V. Linetsky,et al.  Structuring, Pricing and Hedging Double-Barrier Step Options , 2001 .

[52]  A. Lipton Mathematical methods for foreign exchange , 2001 .

[53]  M. Schroder On the integral of geometric Brownian motion , 2002, math/0205063.

[54]  Vadim Linetsky,et al.  Pricing Options on Scalar Diffusions: An Eigenfunction Expansion Approach , 2003, Oper. Res..

[55]  M. Yor,et al.  A survey and some generalizations of Bessel processes , 2003 .

[56]  Rudolf Meyer,et al.  I to K , 2003 .

[57]  T. Alderweireld,et al.  A Theory for the Term Structure of Interest Rates , 2004, cond-mat/0405293.

[58]  V. Linetsky Computing Hitting Time Densities for CIR and OU Diffusions: Applications to Mean-Reverting Models , 2004 .

[59]  Vadim Linetsky,et al.  Spectral Expansions for Asian (Average Price) Options , 2004, Oper. Res..

[60]  V. Linetsky THE SPECTRAL DECOMPOSITION OF THE OPTION VALUE , 2004 .

[61]  M. Yor,et al.  Brownian Excursions and Parisian Barrier Options , 1997, Advances in Applied Probability.