Iterative 3D shape classification by online metric learning

To provide a scalable and flexible tool for 3D shape classification, this paper proposes an iterative 3D shape classification method by integrating incrementally updating, online learning and user intervention. It classifies the collection of 3D shapes iteratively by combing unsupervised clustering with online metric learning, and puts the user intervention into the loop of each iteration. The features of our method lie in three aspects. Firstly, it discovers the potential groups in the collection group by group without any pre-labeled samples or any pre-trained classifiers. Secondly, the users can get the desirable classes by directly confirming the required members of each group and annotate them with any free label to suit for different applications. Finally, the scalable collection can be handled dynamically and efficiently by our incrementally updating mechanism based on the online metric learning. The experimental results prove the effectiveness of the proposed method.

[1]  Vincent Barra,et al.  3D shape retrieval and classification using multiple kernel learning on extended Reeb graphs , 2014, The Visual Computer.

[2]  Maks Ovsjanikov,et al.  Article 1 A. M. Bronstein Shape Google: Geometric Words and Expressions for (20 pages) M. M. Bronstein Invariant Shape Retrieval , 2011 .

[3]  Daniel Cohen-Or,et al.  Active co-analysis of a set of shapes , 2012, ACM Trans. Graph..

[4]  Brian Everitt,et al.  Cluster analysis , 1974 .

[5]  Leonidas J. Guibas,et al.  Fine-grained semi-supervised labeling of large shape collections , 2013, ACM Trans. Graph..

[6]  Tomer Hertz,et al.  Learning a Mahalanobis Metric from Equivalence Constraints , 2005, J. Mach. Learn. Res..

[7]  Daniela Giorgi,et al.  A Comparison Framework for 3D Object Classification Methods , 2006, MRCS.

[8]  Paul Suetens,et al.  SHREC '11 Track: Shape Retrieval on Non-rigid 3D Watertight Meshes , 2011, 3DOR@Eurographics.

[9]  Leonidas J. Guibas,et al.  Shape google: Geometric words and expressions for invariant shape retrieval , 2011, TOGS.

[10]  Michael I. Jordan,et al.  Distance Metric Learning with Application to Clustering with Side-Information , 2002, NIPS.

[11]  Michael I. Jordan,et al.  On Spectral Clustering: Analysis and an algorithm , 2001, NIPS.

[12]  Prateek Jain,et al.  Fast Similarity Search for Learned Metrics , 2009, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Thomas A. Funkhouser,et al.  The Princeton Shape Benchmark , 2004, Proceedings Shape Modeling Applications, 2004..

[14]  Ming Ouhyoung,et al.  On Visual Similarity Based 3D Model Retrieval , 2003, Comput. Graph. Forum.

[15]  Zhengxing Sun,et al.  Progressive 3D shape segmentation using online learning , 2015, Comput. Aided Des..

[16]  Yanxi Liu,et al.  Online Selection of Discriminative Tracking Features , 2005, IEEE Trans. Pattern Anal. Mach. Intell..

[17]  Bin Fang,et al.  A comparison of 3D shape retrieval methods based on a large-scale benchmark supporting multimodal queries , 2015, Comput. Vis. Image Underst..

[18]  Haibin Ling,et al.  Shape Classification Using the Inner-Distance , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Olivier Colot,et al.  Non-rigid 3D shape classification using bag-of-feature techniques , 2011, 2011 IEEE International Conference on Multimedia and Expo.

[20]  Giuseppe Patanè,et al.  Spectral feature selection for shape characterization and classification , 2011, The Visual Computer.

[21]  Andrea Giachetti,et al.  Retrieval and Classification on Textured 3D Models , 2014, 3DOR@Eurographics.

[22]  Brian Kulis,et al.  Metric Learning: A Survey , 2013, Found. Trends Mach. Learn..

[23]  Shi-Min Hu,et al.  Qualitative organization of collections of shapes via quartet analysis , 2013, ACM Trans. Graph..

[24]  Gert R. G. Lanckriet,et al.  Iterative Category Discovery via Multiple Kernel Metric Learning , 2013, International Journal of Computer Vision.

[25]  Remco C. Veltkamp,et al.  A survey of content based 3D shape retrieval methods , 2004, Proceedings Shape Modeling Applications, 2004..

[26]  Martial Hebert,et al.  Parts-based 3D object classification , 2004, CVPR 2004.

[27]  Jonathan Goldstein,et al.  When Is ''Nearest Neighbor'' Meaningful? , 1999, ICDT.

[28]  Matthieu Guillaumin,et al.  Incremental Learning of Random Forests for Large-Scale Image Classification , 2016, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  Cordelia Schmid,et al.  Is that you? Metric learning approaches for face identification , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[30]  Olivier Colot,et al.  A parts-based approach for automatic 3D shape categorization using belief functions , 2013, TIST.

[31]  Dietmar Saupe,et al.  Description of 3D-shape using a complex function on the sphere , 2002, Proceedings. IEEE International Conference on Multimedia and Expo.

[32]  D.M. Mount,et al.  An Efficient k-Means Clustering Algorithm: Analysis and Implementation , 2002, IEEE Trans. Pattern Anal. Mach. Intell..

[33]  Samy Bengio,et al.  Large Scale Online Learning of Image Similarity Through Ranking , 2009, J. Mach. Learn. Res..

[34]  Yong Jae Lee,et al.  Learning the easy things first: Self-paced visual category discovery , 2011, CVPR 2011.

[35]  Petros Daras,et al.  SHREC '11 Track: Generic Shape Retrieval , 2009, 3DOR@Eurographics.

[36]  Marc Rioux,et al.  Nefertiti: a query by content software for three-dimensional models databases management , 1997, Proceedings. International Conference on Recent Advances in 3-D Digital Imaging and Modeling (Cat. No.97TB100134).

[37]  Matthieu Guillaumin,et al.  Incremental Learning of NCM Forests for Large-Scale Image Classification , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[38]  Yoram Singer,et al.  Online and batch learning of pseudo-metrics , 2004, ICML.

[39]  Shuming Gao,et al.  A deep learning approach to the classification of 3D CAD models , 2014, Journal of Zhejiang University SCIENCE C.

[40]  Vincent Barra,et al.  3D shape retrieval using Kernels on Extended Reeb Graphs , 2013, Pattern Recognit..

[41]  Martial Hebert,et al.  Automatic Class Selection and Prototyping for 3-D Object Classification , 2005, Fifth International Conference on 3-D Digital Imaging and Modeling (3DIM'05).

[42]  Koby Crammer,et al.  Online Passive-Aggressive Algorithms , 2003, J. Mach. Learn. Res..

[43]  Rong Jin,et al.  Online Multiple Kernel Similarity Learning for Visual Search , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[44]  Burr Settles,et al.  Active Learning Literature Survey , 2009 .

[45]  Bernard Chazelle,et al.  Shape distributions , 2002, TOGS.

[46]  Ryutarou Ohbuchi,et al.  SHREC'12 Track: Generic 3D Shape Retrieval , 2012, 3DOR@Eurographics.

[47]  Andrew M. Wallace,et al.  Representation and classification of 3-D objects , 2003, IEEE Trans. Syst. Man Cybern. Part B.

[48]  Bin Fang,et al.  Large Scale Comprehensive 3D Shape Retrieval , 2014, 3DOR@Eurographics.