Hematopoietic stem cell involvement in BCR-ABL1-positive ALL as a potential mechanism of resistance to blinatumomab therapy.

The bispecific T-cell engager blinatumomab targeting CD19 can induce complete remission in relapsed or refractory B-cell precursor acute lymphoblastic leukemia (BCP-ALL). However, some patients ultimately relapse with loss of CD19 antigen on leukemic cells, which has been established as a novel mechanism to escape CD19-specific immunotherapies. Here, we provide evidence that CD19-negative (CD19-) relapse after CD19-directed therapy in BCP-ALL may be a result of the selection of preexisting CD19- malignant progenitor cells. We present 2 BCR-ABL1 fusion-positive BCP-ALL patients with CD19- myeloid lineage relapse after blinatumomab therapy and show BCR-ABL1 positivity in their hematopoietic stem cell (HSC)/progenitor/myeloid compartments at initial diagnosis by fluorescence in situ hybridization after cell sorting. By using the same approach with 25 additional diagnostic samples from patients with BCR-ABL1-positive BCP-ALL, we identified HSC involvement in 40% of the patients. Patients (6 of 8) with major BCR-ABL1 transcript encoding P210BCR-ABL1 mainly showed HSC involvement, whereas in most of the patients (9 of 12) with minor BCR-ABL1 transcript encoding P190BCR-ABL1, only the CD19+ leukemia compartments were BCR-ABL1 positive (P = .02). Our data are of clinical importance, because they indicate that both CD19+ cells and CD19- precursors should be targeted to avoid CD19- relapses in patients with BCR-ABL1-positive ALL.

[1]  H. Tony,et al.  Resistance to anti-CD19/CD3 BiTE in acute lymphoblastic leukemia may be mediated by disrupted CD19 membrane trafficking. , 2017, Blood.

[2]  K. Anderson,et al.  Distinct patterns of hematopoietic stem cell involvement in acute lymphoblastic leukemia , 2005, Nature Medicine.

[3]  J. Khan,et al.  CD19 CAR immune pressure induces B-precursor acute lymphoblastic leukaemia lineage switch exposing inherent leukaemic plasticity , 2016, Nature Communications.

[4]  Hermann Einsele,et al.  Targeted therapy with the T-cell-engaging antibody blinatumomab of chemotherapy-refractory minimal residual disease in B-lineage acute lymphoblastic leukemia patients results in high response rate and prolonged leukemia-free survival. , 2011, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[5]  David Allman,et al.  Convergence of Acquired Mutations and Alternative Splicing of CD19 Enables Resistance to CART-19 Immunotherapy. , 2015, Cancer discovery.

[6]  R. Larson,et al.  Safety and activity of blinatumomab for adult patients with relapsed or refractory B-precursor acute lymphoblastic leukaemia: a multicentre, single-arm, phase 2 study. , 2015, The Lancet. Oncology.

[7]  Daniel Li,et al.  CD19 CAR-T cells of defined CD4+:CD8+ composition in adult B cell ALL patients. , 2016, The Journal of clinical investigation.

[8]  Albrecht Reichle,et al.  Phase II trial of the anti-CD19 bispecific T cell-engager blinatumomab shows hematologic and molecular remissions in patients with relapsed or refractory B-precursor acute lymphoblastic leukemia. , 2014, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[9]  M. Trková,et al.  Monitoring of childhood ALL using BCR-ABL1 genomic breakpoints identifies a subgroup with CML-like biology. , 2017, Blood.

[10]  Pamela A Shaw,et al.  Chimeric antigen receptor T cells for sustained remissions in leukemia. , 2014, The New England journal of medicine.

[11]  Seth M Steinberg,et al.  T cells expressing CD19 chimeric antigen receptors for acute lymphoblastic leukaemia in children and young adults: a phase 1 dose-escalation trial , 2015, The Lancet.

[12]  S. Grupp,et al.  Dual CD19 and CD123 targeting prevents antigen-loss relapses after CD19-directed immunotherapies. , 2016, The Journal of clinical investigation.

[13]  W. Klapper,et al.  Blinatumomab versus Chemotherapy for Advanced Acute Lymphoblastic Leukemia , 2017, The New England journal of medicine.

[14]  D. Maloney,et al.  Acquisition of a CD19-negative myeloid phenotype allows immune escape of MLL-rearranged B-ALL from CD19 CAR-T-cell therapy. , 2016, Blood.

[15]  Xiuli Wang,et al.  T cells expressing CD123-specific chimeric antigen receptors exhibit specific cytolytic effector functions and antitumor effects against human acute myeloid leukemia. , 2013, Blood.

[16]  Andreas Wolf,et al.  Immunopharmacologic response of patients with B-lineage acute lymphoblastic leukemia to continuous infusion of T cell-engaging CD19/CD3-bispecific BiTE antibody blinatumomab. , 2012, Blood.