Infinite-Dimensional Highly-Uniform Point Sets Defined via Linear Recurrences in $$\mathbb{F}_{2^w } $$

We construct infinite-dimensional highly-uniform point sets for quasi-Monte Carlo integration. The successive coordinates of each point are determined by a linear recurrence in \(\mathbb{F}_{2^w } \), the finite field with 2w elements where w is an integer, and a mapping from this field to the interval [0, 1). One interesting property of these point sets is that almost all of their two-dimensional projections are perfectly equidistributed. We performed searches for specific parameters in terms of different measures of uniformity and different numbers of points. We give a numerical illustration showing that using randomized versions of these point sets in place of independent random points can reduce the variance drastically for certain functions.

[1]  Harald Niederreiter,et al.  Introduction to finite fields and their applications: List of Symbols , 1986 .

[2]  Harald Niederreiter,et al.  Random number generation and Quasi-Monte Carlo methods , 1992, CBMS-NSF regional conference series in applied mathematics.

[3]  I. Sloan Lattice Methods for Multiple Integration , 1994 .

[4]  W. J. Whiten,et al.  Computational investigations of low-discrepancy sequences , 1997, TOMS.

[5]  Art B. Owen,et al.  Latin supercube sampling for very high-dimensional simulations , 1998, TOMC.

[6]  P. L’Ecuyer,et al.  Variance Reduction via Lattice Rules , 1999 .

[7]  Pierre L'Ecuyer,et al.  Recent Advances in Randomized Quasi-Monte Carlo Methods , 2002 .

[8]  Ferenc Szidarovszky,et al.  Modeling uncertainty : an examination of stochastic theory, methods, and applications , 2002 .

[9]  Pierre L'Ecuyer,et al.  Random Number Generators Based on Linear Recurrences in F 2 w , 2003 .

[10]  Art B. Owen,et al.  Variance with alternative scramblings of digital nets , 2003, TOMC.

[11]  Pierre L'Ecuyer,et al.  Randomized Polynomial Lattice Rules for Multivariate Integration and Simulation , 2001, SIAM J. Sci. Comput..

[12]  Michael C. Fu,et al.  Guest editorial , 2003, TOMC.

[13]  Pierre L'Ecuyer,et al.  Random Number Generators Based on Linear Recurrences in \( \mathbb{F}_{2^w } \) , 2004 .

[14]  Francois Panneton Construction d'ensembles de points basee sur des recurrences lineaires dans un corps fini de caracteristique 2 pour la simulation Monte Carlo et l'integration quasi-Monte Carlo , 2004 .

[15]  Harald Niederreiter,et al.  Constructions of (t, m, s)-nets and (t, s)-sequences , 2005, Finite Fields Their Appl..