Abnormalities in the normal appearing white matter of the cerebral hemisphere contralateral to a malignant brain tumor detected by diffusion tensor imaging.

INTRODUCTION Malignant brain tumors tend to migration and invasion of surrounding brain tissue. Histopathological studies reported malignant cells in macroscopically unsuspicious parenchyma (normal appearing white matter - NAWM) remote from the tumor localization. In early stages, diffuse interneural infiltration with changes of the apparent diffusion coefficient (ADC) and fractional anisotropy (FA) is hypothesized. MATERIAL AND METHODS Patients' ADC and FA values from NAWM of the hemisphere contralateral to a malignant glioma were compared to age- and sex-matched normal controls. RESULTS Apparent diffusion coefficient levels of the entire contralateral hemisphere revealed a significant increase and a decrease of FA levels. An even more pronounced ADC increase was found in a region mirroring the glioma location. CONCLUSIONS In patients with previously untreated anaplastic astrocytoma or glioblastoma, an increase of the ADC and a reduction of FA were found in the brain parenchyma of the hemisphere contralateral to the tumor localization. In the absence of visible MRI abnormalities, this may be an early indicator of microstructural changes of the NAWM attributed to malignant brain tumor.

[1]  P. Dechent,et al.  Glioma infiltration of the corpus callosum: early signs detected by DTI , 2013, Journal of Neuro-Oncology.

[2]  P. Liberski,et al.  Magnetic resonance spectroscopy in intracranial tumours of glial origin. , 2013, Neurologia i neurochirurgia polska.

[3]  Jinyuan Zhou,et al.  Diffusion Tensor Magnetic Resonance Imaging of Rat Glioma Models: A Correlation Study of MR Imaging and Histology , 2012, Journal of computer assisted tomography.

[4]  P van Leeuwen,et al.  Influence of brain tumors on the MR spectra of healthy brain tissue , 2011, Magnetic resonance in medicine.

[5]  B. Bobek-Billewicz,et al.  Fibre integrity and diffusivity of the pyramidal tract and motor cortex within and adjacent to brain tumour in patients with or without neurological deficits. , 2011, Folia neuropathologica.

[6]  H. Lanfermann,et al.  Cerebral gliomas: diffusional kurtosis imaging analysis of microstructural differences. , 2010, Radiology.

[7]  Jens Frahm,et al.  Reconstruction and Dissection of the Entire Human Visual Pathway Using Diffusion Tensor MRI , 2009, Front. Neuroanat..

[8]  P. Dechent,et al.  Untreated glioblastoma multiforme: increased myo-inositol and glutamine levels in the contralateral cerebral hemisphere at proton MR spectroscopy. , 2009, Radiology.

[9]  J. Frahm,et al.  In vivo MRI of altered brain anatomy and fiber connectivity in adult pax6 deficient mice. , 2009, Cerebral Cortex.

[10]  A. Server,et al.  Quantitative apparent diffusion coefficients in the characterization of brain tumors and associated peritumoral edema , 2009, Acta radiologica.

[11]  P. Dechent,et al.  Serial proton MR spectroscopy and diffusion tensor imaging in infantile Balo’s concentric sclerosis , 2008, Neuroradiology.

[12]  A. Krishnan,et al.  Evidence that MR diffusion tensor imaging (tractography) predicts the natural history of regional progression in patients irradiated conformally for primary brain tumors. , 2008, International journal of radiation oncology, biology, physics.

[13]  B. Stieltjes,et al.  Funktionelle Bildgebung bei Hirntumoren (Perfusion, DTI, MR-Spektroskopie) , 2007, Der Radiologe.

[14]  Matthias Küntzel Parallele Datenakquisition zur Beschleunigung Diffusionsgewichteter Kernspintomographie mit Stimulierten Echos , 2007 .

[15]  M. Essig,et al.  [Functional imaging for brain tumors (perfusion, DTI and MR spectroscopy)]. , 2007, Der Radiologe.

[16]  J. Barcia,et al.  Fatal outcome related to carmustine implants in glioblastoma multiforme , 2007, Acta Neurochirurgica.

[17]  G Johnson,et al.  Whole-brain N-acetylaspartate spectroscopy and diffusion tensor imaging in patients with newly diagnosed gliomas: a preliminary study. , 2006, AJNR. American journal of neuroradiology.

[18]  Christopher Nimsky,et al.  Gliomas: histopathologic evaluation of changes in directionality and magnitude of water diffusion at diffusion-tensor MR imaging. , 2006, Radiology.

[19]  Jens Frahm,et al.  Topography of the human corpus callosum revisited—Comprehensive fiber tractography using diffusion tensor magnetic resonance imaging , 2006, NeuroImage.

[20]  Heinz-Otto Peitgen,et al.  Diffusion tensor imaging in primary brain tumors: Reproducible quantitative analysis of corpus callosum infiltration and contralateral involvement using a probabilistic mixture model , 2006, NeuroImage.

[21]  B Stieltjes,et al.  Detection of tumour infiltration in axonal fibre bundles using diffusion tensor imaging , 2005, The international journal of medical robotics + computer assisted surgery : MRCAS.

[22]  Jens Frahm,et al.  Diffusion tensor imaging using partial Fourier STEAM MRI with projection onto convex subsets reconstruction , 2005, Magnetic resonance in medicine.

[23]  Hiroyuki Kabasawa,et al.  Fractional anisotropy value by diffusion tensor magnetic resonance imaging as a predictor of cell density and proliferation activity of glioblastomas. , 2005, Surgical neurology.

[24]  M. Hartmann,et al.  [Pseudonormalization of diffusion weighted images: magnetic resonance imaging in an animal model (C6-glioma)]. , 2005, RoFo : Fortschritte auf dem Gebiete der Rontgenstrahlen und der Nuklearmedizin.

[25]  S. Heiland,et al.  Pseudonormalisierung diffusionsgewichteter Aufnahmen: Magnetresonanztomografische untersuchungen im Tiermodell (C6-Gliom) , 2004 .

[26]  T. Kageji,et al.  Histopathological Findings in Autopsied Glioblastoma Patients Treated by Mixed Neutron Beam BNCT , 2004, Journal of Neuro-Oncology.

[27]  R. Mahesparan,et al.  Biological Mechanisms of Glioma Invasion and Potential Therapeutic Targets , 2001, Journal of Neuro-Oncology.

[28]  R. Tanaka,et al.  Magnetic resonance imaging and histopathology of cerebral gliomas , 2004, Neuroradiology.

[29]  J D Pickard,et al.  Diffusion tensor imaging of brain tumours at 3T: a potential tool for assessing white matter tract invasion? , 2003, Clinical radiology.

[30]  M. Westphal,et al.  Cost of migration: invasion of malignant gliomas and implications for treatment. , 2003, Journal of clinical oncology : official journal of the American Society of Clinical Oncology.

[31]  M. Peschanski,et al.  Invasion of human glioma biopsy specimens in cultures of rodent brain slices: a quantitative analysis. , 2002, Journal of neurosurgery.

[32]  K. Kono,et al.  The role of diffusion-weighted imaging in patients with brain tumors. , 2001, AJNR. American journal of neuroradiology.

[33]  D. Silbergeld,et al.  Isolation and characterization of human malignant glioma cells from histologically normal brain. , 1997, Journal of neurosurgery.

[34]  Michal Neeman,et al.  A simple method for obtaining cross‐term‐free images for diffusion anisotropy studies in NMR microimaging , 1991, Magnetic resonance in medicine.

[35]  B. Drayer,et al.  Human cerebral gliomas: correlation of postmortem MR imaging and neuropathologic findings. , 1989, Radiology.

[36]  B A Kall,et al.  Imaging-based stereotaxic serial biopsies in untreated intracranial glial neoplasms. , 1987, Journal of neurosurgery.

[37]  A. Alavi,et al.  MR signal abnormalities at 1.5 T in Alzheimer's dementia and normal aging. , 1987, AJR. American journal of roentgenology.

[38]  Y. Matsukado,et al.  The growth of glioblastoma multiforme (astrocytomas, grades 3 and 4) in neurosurgical practice. , 1961, Journal of neurosurgery.

[39]  H. Scherer Structural Development in Gliomas , 1938 .

[40]  C. Monakow,et al.  Die Lokalisation im Grosshirn und der Abbau der Funktion durch kortikale Herde , 1914 .