Modelling local and global phenomena with sparse Gaussian processes
暂无分享,去创建一个
[1] พงศ์ศักดิ์ บินสมประสงค์,et al. FORMATION OF A SPARSE BUS IMPEDANCE MATRIX AND ITS APPLICATION TO SHORT CIRCUIT STUDY , 1980 .
[2] H. Rue,et al. Approximate Bayesian inference for hierarchical Gaussian Markov random field models , 2007 .
[3] Neil D. Lawrence,et al. Fast Forward Selection to Speed Up Sparse Gaussian Process Regression , 2003, AISTATS.
[4] Zoubin Ghahramani,et al. Sparse Gaussian Processes using Pseudo-inputs , 2005, NIPS.
[5] Zoubin Ghahramani,et al. Local and global sparse Gaussian process approximations , 2007, AISTATS.
[6] Neil D. Lawrence,et al. Fast Sparse Gaussian Process Methods: The Informative Vector Machine , 2002, NIPS.
[7] Edward Lloyd Snelson,et al. Flexible and efficient Gaussian process models for machine learning , 2007 .
[8] Timothy A. Davis,et al. Direct methods for sparse linear systems , 2006, Fundamentals of algorithms.
[9] Carl E. Rasmussen,et al. A Unifying View of Sparse Approximate Gaussian Process Regression , 2005, J. Mach. Learn. Res..
[10] T. Gneiting. Compactly Supported Correlation Functions , 2002 .
[11] Christopher J Paciorek,et al. Spatial modelling using a new class of nonstationary covariance functions , 2006, Environmetrics.
[12] Amos Storkey,et al. Efficient Covariance Matrix Methods for Bayesian Gaussian Processes and Hopfield Neural Networks , 1999 .
[13] H. Niessner,et al. On computing the inverse of a sparse matrix , 1983 .
[14] Timothy A. Davis,et al. Algorithm 837: AMD, an approximate minimum degree ordering algorithm , 2004, TOMS.
[15] Carl E. Rasmussen,et al. Gaussian processes for machine learning , 2005, Adaptive computation and machine learning.