A Statistical Study of Random Knotting Using the Vassiliev Invariants

Employing the Vassiliev invariants as tools for determining knot types of polygons in 3 dimensions, we evaluate numerically the knotting probability PK(N) of the Gaussian random polygon being equivalent to a knot type K. For prime knots and composite knots we plot the knotting probability PK(N) against the number N of polygonal nodes. Taking the analogy with the asymptotic scaling behaviors of self-avoiding walks, we propose a formula of fitting curves to the numerical data. The curves fit well the graphs of the knotting probability PK(N) versus N. This agreement suggests to us that the scaling formula for the knotting probability might also work for the random polygons other than the Gaussian random polygon.

[1]  M. L. Mehta,et al.  Sequence of invariants for knots and links , 1981 .

[2]  Al Young Providence, Rhode Island , 1975 .

[3]  Y. Akutsu,et al.  INVARIANTS OF COLORED LINKS , 1992 .

[4]  V. Turaev OPERATOR INVARIANTS OF TANGLES, AND R-MATRICES , 1990 .

[5]  J. Birman,et al.  Knot polynomials and Vassiliev's invariants , 1993 .

[6]  Jozef H. Przytycki,et al.  Invariants of links of Conway type , 1988, 1610.06679.

[7]  K. Millett,et al.  A polynomial invariant of oriented links , 1987 .

[9]  N. Sait̂o,et al.  Statistics of a random coil chain in the presence of a point (two-dimensional case) or line (three-dimensional case) obstacle , 1973 .

[10]  J. Roovers,et al.  Synthesis of high molecular weight ring polystyrenes , 1983 .

[11]  Chern-Simons perturbation theory. II , 1993, hep-th/9304087.

[12]  D. Bar-Natan PERTURBATIVE CHERN-SIMONS THEORY , 1995 .

[13]  S. Whittington,et al.  Knots in self-avoiding walks , 1988 .

[14]  J. Michels,et al.  Probability of knots in a polymer ring , 1982 .

[15]  Stuart G. Whittington,et al.  The knot probability in lattice polygons , 1990 .

[16]  M. Wadati,et al.  The Yang-Baxter Relation: A New Tool for Knot Theory , 1991 .

[17]  Jun O'Hara,et al.  Energy functionals of knots II , 1994 .

[18]  V. Turaev The Yang-Baxter equation and invariants of links , 1988 .

[19]  F. W. Wiegel,et al.  On the topology of a polymer ring , 1986, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[20]  Muthukumar,et al.  Knottedness in ring polymers. , 1991, Physical review letters.

[21]  N R Cozzarelli,et al.  Probability of DNA knotting and the effective diameter of the DNA double helix. , 1993, Proceedings of the National Academy of Sciences of the United States of America.