Appropriate shape of cohesive zone model for delamination propagation in ENF specimens with R-curve effects

Abstract Shape and parameters of a cohesive zone model (CZM) significantly affect the finite element modeling of delamination propagation in composites. The influence of various forms of interface laws on the delamination initiation and propagation behavior of end-notched flexure (ENF) specimens with R-curve effects is addressed. Four different traction-separation laws have been considered whose shapes are bilinear, linear-exponential, trapezoidal, and trilinear. The trilinear CZM used in this study is produced by superposing of two bilinear CZMs. All CZMs have the same values of the maximum traction and of the associated fracture energy, and are implemented in the ABAQUS/Standard. Numerical results are assessed with the experimental load-displacement responses of glass/epoxy ENF specimens available in the literature. Results show that the trapezoidal and trilinear CZMs simulate the delamination propagation in ENF specimens more accurately than others. At the same time, the superposed trilinear traction-separation law considers the length of fracture process zone and predicts both the nonlinearity point and maximum point of load-displacement curve more accurately than the trapezoidal one.

[1]  J. G. Williams,et al.  Fracture Mechanics Testing Methods for Polymers, Adhesives and Composites , 2001 .

[2]  Nicholas G. Tsouvalis,et al.  Experimental and numerical investigation of Mode II fracture in fibrous reinforced composites , 2011 .

[3]  Zhigang Suo,et al.  Remarks on Crack-Bridging Concepts , 1992 .

[4]  M.F.S.F. de Moura,et al.  Equivalent crack based analyses of ENF and ELS tests , 2008 .

[5]  V. Tamužs,et al.  Progressive delamination and fiber bridging modeling in double cantilever beam composite specimens , 2001 .

[6]  N. Chandra,et al.  Some issues in the application of cohesive zone models for metal–ceramic interfaces , 2002 .

[7]  M. Shokrieh,et al.  Finite element modeling of mode I delamination growth in laminated DCB specimens with R-curve effects , 2013 .

[8]  H. Nguyen-Dang,et al.  Imperfect interlaminar interfaces in laminated composites: delamination with the R-curve effect , 2000 .

[9]  Barry D. Davidson,et al.  Effects of Friction, Geometry, and Fixture Compliance on the Perceived Toughness from Three-and Four-Point Bend End-Notched Flexure Tests , 2005 .

[10]  Andreas J. Brunner,et al.  Mode II fracture testing of composites: a new look at an old problem , 2006 .

[11]  A. Marques,et al.  Mode II Interlaminar Fracture of Filament Wound Angle-ply Specimens , 2002 .

[12]  G. D. Sims,et al.  Comparison of test configurations for determination of mode II interlaminar fracture toughness results from international collaborative test programme , 1999 .

[13]  P. Camanho,et al.  A procedure for superposing linear cohesive laws to represent multiple damage mechanisms in the fracture of composites , 2009 .

[14]  M. Shokrieh,et al.  Delamination R-curve as a material property of unidirectional glass/epoxy composites , 2012 .

[15]  Pedro P. Camanho,et al.  Numerical Simulation of Delamination Growth in Composite Materials , 2001 .

[16]  T. Vu-khanh,et al.  Effects of Large Deflection on Mode II Fracture Test of Composite Materials , 1995 .

[17]  A. Airoldi,et al.  Identification of material parameters for modelling delamination in the presence of fibre bridging , 2012 .

[18]  Zhigang Suo,et al.  Delamination R-curve phenomena due to damage , 1992 .

[19]  J. G. Williams,et al.  Analytical solutions for cohesive zone models , 2002 .

[20]  G. I. Barenblatt THE MATHEMATICAL THEORY OF EQUILIBRIUM CRACKS IN BRITTLE FRACTURE , 1962 .

[21]  J. Hutchinson,et al.  The relation between crack growth resistance and fracture process parameters in elastic-plastic solids , 1992 .

[22]  Tove Jacobsen,et al.  Large scale bridging in compos-ites: R-curve and bridging laws , 1998 .

[23]  A. Pirondi,et al.  Cohesive zone modelling of delamination response of a composite laminate with interleaved nylon 6,6 nanofibres , 2015 .

[24]  V. Tamužs,et al.  Mode II Delamination of a Unidirectional Carbon Fiber/Epoxy Composite in Four-Point Bend End-Notched Flexure Tests , 2005 .

[25]  Ronald Krueger,et al.  The Virtual Crack Closure Technique : History , Approach and Applications , 2002 .

[26]  Brian N. Cox,et al.  Concepts for bridged cracks in fracture and fatigue , 1994 .

[27]  J. Botsis,et al.  Bridging tractions in mode I delamination: Measurements and simulations , 2008 .

[28]  M.F.S.F. de Moura,et al.  Evaluation of initiation criteria used in interlaminar fracture tests , 2006 .

[29]  M. Shokrieh,et al.  Calculation of GI for a multidirectional composite double cantilever beam on two-parametric elastic foundation , 2011 .

[30]  Zhanjun Wu,et al.  Mode II interlaminar fracture toughness of unidirectional fiber-reinforced polymer matrix composites with synthetic boehmite nanosheets at room temperature and low temperature , 2018 .

[31]  A. Pirondi,et al.  A numerical investigation on the interlaminar strength of nanomodified composite interfaces , 2013 .

[32]  A. Morais Novel cohesive beam model for the End-Notched Flexure (ENF) specimen , 2011 .

[33]  G. Alfano On the influence of the shape of the interface law on the application of cohesive-zone models , 2006 .

[34]  M.F.S.F. de Moura,et al.  Bilinear approximations to the mode II delamination cohesive law using an inverse method , 2012 .

[35]  C. Rose,et al.  Superposition of Cohesive Elements to Account for R-Curve Toughening in the Fracture of Composites , 2008 .

[36]  G. I. Barenblatt The formation of equilibrium cracks during brittle fracture. General ideas and hypotheses. Axially-symmetric cracks , 1959 .

[37]  Ai-Min Yan,et al.  A finite-element model of mixed-mode delamination in laminated composites with an R-curve effect , 2001 .

[38]  Anthony G. Evans,et al.  The role of fiber bridging in the delamination resistance of fiber-reinforced composites , 1992 .

[39]  A. Morais,et al.  Application of the effective crack method to mode I and mode II interlaminar fracture of carbon/epoxy unidirectional laminates , 2007 .

[40]  A. Hillerborg,et al.  Analysis of crack formation and crack growth in concrete by means of fracture mechanics and finite elements , 1976 .

[41]  Peter Davies,et al.  A status report on delamination resistance testing of polymer-matrix composites , 2008 .

[42]  Barry D. Davidson,et al.  Mode II fracture toughness evaluation using four point bend, end notched flexure test , 1999 .

[43]  D. S. Dugdale Yielding of steel sheets containing slits , 1960 .