Precursor Self‐Assembly Identified as a General Pathway for Colloidal Semiconductor Magic‐Size Clusters

Little is known about the formation pathway of colloidal semiconductor magic‐size clusters (MSCs). Here, the synthesis of the first single‐ensemble ZnSe MSCs, which exhibit a sharp optical absorption singlet peaking at 299 nm, is reported; their formation is independent of Zn and Se precursors used. It is proposed that the formation of MSCs starts with precursor self‐assembly followed by Zn and Se covalent bond formation to result in immediate precursors (IPs) which can transform into the MSCs. It is demonstrated that the IPs in cyclohexane appear transparent in optical absorption, and become visible as MSCs exhibiting one sharp optical absorption peak when a primary amine is added at room temperature. It is shown that when the preparation of the IP is controlled to be within the induction period, which occurs prior to nucleation and growth of conventional quantum dots (QDs), the resulting MSCs can be produced without the complication of the simultaneous coproduction of conventional QDs. The present study reveals the existence of precursor self‐assembly which leads to the formation of colloidal semiconductor MSCs and provides insights into a multistep nucleation process in cluster science.

[1]  X. Zuo,et al.  Thermally-induced reversible structural isomerization in colloidal semiconductor CdS magic-size clusters , 2018, Nature Communications.

[2]  Kui Yu,et al.  Interpreting the Ultraviolet Absorption in the Spectrum of 415 nm-Bandgap CdSe Magic-Size Clusters. , 2018, The journal of physical chemistry letters.

[3]  Zhenyu Yang,et al.  Bright colloidal quantum dot light-emitting diodes enabled by efficient chlorination , 2018 .

[4]  H. Fan,et al.  Colloidal CdSe 0-Dimension Nanocrystals and Their Self-Assembled 2-Dimension Structures , 2018 .

[5]  P. Fratzl,et al.  The Crystallization of Amorphous Calcium Carbonate is Kinetically Governed by Ion Impurities and Water , 2018, Advanced science.

[6]  L. Kourkoutis,et al.  Mesophase Formation Stabilizes High-Purity Magic-Sized Clusters. , 2018, Journal of the American Chemical Society.

[7]  R. Neumann,et al.  Self-Assembly through Noncovalent Preorganization of Reactants: Explaining the Formation of a Polyfluoroxometalate. , 2018, Chemistry.

[8]  N. Govind,et al.  Supersaturated calcium carbonate solutions are classical , 2018, Science Advances.

[9]  Yen Wei,et al.  Controlling Vesicular Size via Topological Engineering of Amphiphilic Polymer in Polymerization-Induced Self-Assembly , 2017 .

[10]  Jun Yang,et al.  Precise control of alloying sites of bimetallic nanoclusters via surface motif exchange reaction , 2017, Nature Communications.

[11]  Oleksandr Voznyy,et al.  Mixed-quantum-dot solar cells , 2017, Nature Communications.

[12]  J. Ripmeester,et al.  Two-Step Nucleation of CdS Magic-Size Nanocluster MSC–311 , 2017 .

[13]  J. Ripmeester,et al.  Probing intermediates of the induction period prior to nucleation and growth of semiconductor quantum dots , 2017, Nature Communications.

[14]  Taeghwan Hyeon,et al.  Chemical Synthesis, Doping, and Transformation of Magic-Sized Semiconductor Alloy Nanoclusters. , 2017, Journal of the American Chemical Society.

[15]  Ting Qi,et al.  General low-temperature reaction pathway from precursors to monomers before nucleation of compound semiconductor nanocrystals , 2016, Nature Communications.

[16]  Taeghwan Hyeon,et al.  Digital Doping in Magic-Sized CdSe Clusters. , 2016, ACS nano.

[17]  P. Král,et al.  Multistep nucleation of nanocrystals in aqueous solution. , 2016, Nature chemistry.

[18]  C. Ratcliffe,et al.  Bright Gradient-Alloyed CdSexS1–x Quantum Dots Exhibiting Cyan-Blue Emission , 2016 .

[19]  M. A. Malik,et al.  Special Role for Zinc Stearate and Octadecene in the Synthesis of Luminescent ZnSe Nanocrystals , 2015 .

[20]  S. Billinge,et al.  Two-Step Nucleation and Growth of InP Quantum Dots via Magic-Sized Cluster Intermediates , 2015 .

[21]  Yuanyuan Wang,et al.  Magic-size II-VI nanoclusters as synthons for flat colloidal nanocrystals. , 2015, Inorganic chemistry.

[22]  D. Leong,et al.  Toward understanding the growth mechanism: tracing all stable intermediate species from reduction of Au(I)-thiolate complexes to evolution of Au₂₅ nanoclusters. , 2014, Journal of the American Chemical Society.

[23]  Xiaohao Yang,et al.  Atomic structures and gram scale synthesis of three tetrahedral quantum dots. , 2014, Journal of the American Chemical Society.

[24]  Changwei Hu,et al.  Mechanistic study of the role of primary amines in precursor conversions to semiconductor nanocrystals at low temperature. , 2014, Angewandte Chemie.

[25]  A. V. Van Driessche,et al.  Role of clusters in nonclassical nucleation and growth of protein crystals , 2014, Proceedings of the National Academy of Sciences.

[26]  Kui Yu,et al.  The formation mechanism of binary semiconductor nanomaterials: shared by single-source and dual-source precursor approaches. , 2013, Angewandte Chemie.

[27]  B. Trout,et al.  Nucleation from Solution , 2013, Science.

[28]  T. Aubert,et al.  Synthesis of metal selenide colloidal nanocrystals by the hot injection of selenium powder. , 2013, Dalton transactions.

[29]  M. Bawendi,et al.  Direct probe of spectral inhomogeneity reveals synthetic tunability of single-nanocrystal spectral linewidths. , 2013, Nature chemistry.

[30]  Y. Niu,et al.  Highly reactive, flexible yet green Se precursor for metal selenide nanocrystals: Se-octadecene suspension (Se-SUS) , 2013, Nano Research.

[31]  J. Ripmeester,et al.  Effect of tertiary and secondary phosphines on low-temperature formation of quantum dots. , 2013, Angewandte Chemie.

[32]  Z. Jakubek,et al.  Low-temperature approach to highly emissive copper indium sulfide colloidal nanocrystals and their bioimaging applications. , 2013, ACS applied materials & interfaces.

[33]  L. Konermann,et al.  Nanocluster isotope distributions measured by electrospray time-of-flight mass spectrometry. , 2013, Analytical chemistry.

[34]  Kui Yu,et al.  Ultraviolet ZnSe₁-xSx gradient-alloyed nanocrystals via a noninjection approach. , 2012, ACS applied materials & interfaces.

[35]  M. Gross,et al.  Isolation of the magic-size CdSe nanoclusters [(CdSe)13(n-octylamine)13] and [(CdSe)13(oleylamine)13]. , 2012, Angewandte Chemie.

[36]  R. Davey,et al.  Nucleation of organic crystals--a molecular perspective. , 2012, Angewandte Chemie.

[37]  Kui Yu CdSe Magic‐Sized Nuclei, Magic‐Sized Nanoclusters and Regular Nanocrystals: Monomer Effects on Nucleation and Growth , 2012, Advanced materials.

[38]  Kui Yu,et al.  In-situ observation of nucleation and growth of PbSe magic-sized nanoclusters and regular nanocrystals. , 2011, Small.

[39]  Kui Yu,et al.  Highly-photoluminescent ZnSe nanocrystals via a non-injection-based approach with precursor reactivity elevated by a secondary phosphine. , 2011, Chemical communications.

[40]  T. Fässler,et al.  Zintl ions, cage compounds, and intermetalloid clusters of Group 14 and Group 15 elements. , 2011, Angewandte Chemie.

[41]  Kui Yu,et al.  Low-temperature noninjection approach to homogeneously-alloyed PbSe(x)S(1-x) colloidal nanocrystals for photovoltaic applications. , 2011, ACS applied materials & interfaces.

[42]  Kui Yu,et al.  Low-temperature approach to high-yield and reproducible syntheses of high-quality small-sized PbSe colloidal nanocrystals for photovoltaic applications. , 2011, ACS applied materials & interfaces.

[43]  F. Müller,et al.  The role of prenucleation clusters in surface-induced calcium phosphate crystallization. , 2010, Nature materials.

[44]  Xingcan Shen,et al.  Multiple Families of Magic-Sized ZnSe Quantum Dots via Noninjection One-Pot and Hot-Injection Synthesis , 2010 .

[45]  Christopher M. Evans,et al.  Mysteries of TOPSe revealed: insights into quantum dot nucleation. , 2010, Journal of the American Chemical Society.

[46]  A. Schaper,et al.  Discontinuous Growth of II−VI Semiconductor Nanocrystals from Different Materials , 2010 .

[47]  N. Jana,et al.  An Alternate Route to High-Quality ZnSe and Mn-Doped ZnSe Nanocrystals , 2010 .

[48]  Helmut Cölfen,et al.  Stable Prenucleation Calcium Carbonate Clusters , 2008, Science.

[49]  Christopher I. Ratcliffe,et al.  Multiple Families of Magic-Sized CdSe Nanocrystals with Strong Bandgap Photoluminescence via Noninjection One-Pot Syntheses , 2008 .

[50]  Yang Li,et al.  Sequential Growth of Magic‐Size CdSe Nanocrystals , 2007 .

[51]  M. Bawendi,et al.  On the mechanism of lead chalcogenide nanocrystal formation. , 2006, Journal of the American Chemical Society.

[52]  Yongan Yang,et al.  Synthesis of CdSe and CdTe nanocrystals without precursor injection. , 2005, Angewandte Chemie.

[53]  Shree Krishna Acharya,et al.  Ultranarrow ZnSe Nanorods and Nanowires: Structure, Spectroscopy, and One‐Dimensional Properties , 2005, Advanced Materials.

[54]  P. Mulvaney,et al.  Phosphine-free synthesis of CdSe nanocrystals. , 2005, The journal of physical chemistry. B.

[55]  Virginia Chu,et al.  Effect of reaction media on the growth and photoluminescence of colloidal CdSe nanocrystals. , 2004, Langmuir : the ACS journal of surfaces and colloids.

[56]  M. Fujita,et al.  Finite, spherical coordination networks that self-organize from 36 small components. , 2004, Angewandte Chemie.

[57]  Xiaogang Peng,et al.  High Quality ZnSe and ZnS Nanocrystals Formed by Activating Zinc Carboxylate Precursors , 2004 .

[58]  A. Pron,et al.  Luminescent ZnSe nanocrystals of high color purity , 2004 .

[59]  Y. Kawazoe,et al.  Ultra-stable nanoparticles of CdSe revealed from mass spectrometry , 2004, Nature materials.

[60]  Xiaogang Peng,et al.  Nearly monodisperse and shape-controlled CdSe nanocrystals via alternative routes: nucleation and growth. , 2002, Journal of the American Chemical Society.

[61]  M. El-Sayed,et al.  Observation of Large Changes in the Band Gap Absorption Energy of Small CdSe Nanoparticles Induced by the Adsorption of a Strong Hole Acceptor , 2001 .

[62]  A. Nozik Quantum dot solar cells , 2001 .

[63]  Xiaogang Peng,et al.  Formation of high-quality CdTe, CdSe, and CdS nanocrystals using CdO as precursor. , 2001, Journal of the American Chemical Society.

[64]  M. Bawendi,et al.  Photoluminescence from Single Semiconductor Nanostructures , 1999 .

[65]  M. Bruchez,et al.  Semiconductor Nanocrystals as Fluorescent Biological Labels , 1998 .

[66]  P. Guyot-Sionnest,et al.  Bright UV-Blue Luminescent Colloidal ZnSe Nanocrystals , 1998 .

[67]  H. Beinert,et al.  Iron-sulfur clusters: nature's modular, multipurpose structures. , 1997, Science.

[68]  A. W. Castleman,et al.  Clusters: Structure, Energetics, and Dynamics of Intermediate States of Matter , 1996 .

[69]  R. Zana Critical Micellization Concentration of Surfactants in Aqueous Solution and Free Energy of Micellization , 1996 .

[70]  A. Alivisatos Semiconductor Clusters, Nanocrystals, and Quantum Dots , 1996, Science.

[71]  A. Alivisatos,et al.  Light-emitting diodes made from cadmium selenide nanocrystals and a semiconducting polymer , 1994, Nature.

[72]  M. Bawendi,et al.  Synthesis and characterization of nearly monodisperse CdE (E = sulfur, selenium, tellurium) semiconductor nanocrystallites , 1993 .

[73]  R. Smalley,et al.  Self-assembly of the fullerenes , 1992 .

[74]  N. Turro,et al.  Fluorescence probes for critical micelle concentration determination. , 1985, Langmuir : the ACS journal of surfaces and colloids.

[75]  L. Brus,et al.  Quantum size effects in the redox potentials, resonance Raman spectra, and electronic spectra of CdS crystallites in aqueous solution , 1983 .

[76]  V. Lamer,et al.  Theory, Production and Mechanism of Formation of Monodispersed Hydrosols , 1950 .